Cold Spring Harbor Laboratory CSH DNA LEARNING CENTER

DNALCLIVE **Barcoding Bioinformatics** Part III

Jason Williams

Cold Spring Harbor Laboratory, DNA Learning Center

williams@cshl.edu

@JasonWilliamsNY

DNALC Live

This is an experiment; give us feedback on what you would like to see!

DNALC *Live*

- Provide genetics, molecular biology, and bioinformatics learning resources
- Laboratory and computer demos, short online courses for middle school, high school, and the general public
- Interviews with scientists, help for teachers
- At-home activities, social media contests, and more

DNALC Website and Social Media

dnalc.cshl.edu

dnalc.cshl.edu/dnalc-live

DNALC Website and Social Media

youtube.com/DNALearningCenter

facebook.com/cshldnalc

@dnalc

@dna_learning_center

Barcoding Bioinformatics Part III

Who is this course for?

- Audience(s): US AP Biology (high school grades 10-12) AND Intro undergraduate biology
- Format: 3 sessions (1 per week); ~ 45 minutes each
- Exercises: Follow along with our online bioinformatics tool DNA Subway
- Learning resources: Slides and packet available (teachers can also request the teacher edition)

Course Learning Goals

- Learn how DNA can be used to identify unknown organisms
- Understand how we obtain DNA Sequence and access its quality
- Use BLAST* to compare an unknown DNA Sequence to known sequences
- Compare DNA Sequences using phylogenetics

*AP Bio (Lab 3 – Comparing DNA Sequences)

Lab Setup

 We will be using DNA Subway – You can get a free account at cyverse.org (optional)

Barcoding Bioinformatics Part III

(Sequence alignment and phylogenetics)

Steps for today's session

- Recap on our experimental dataset
- Review of BLAST
- Introduction to multiple alignment
- Introduction to phylogenetic trees

Recap of the dataset

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Photograph by Michele M. Cutwa, University of Florida.

Anopheles larva

Culex larva

Photograph by Michelle Cutwa-Francis, University of Florida.

Cold Spring Harbor Laboratory DNA LEARNING CENTER

CSH S

Steps to DNA Barcoding

ACGAGTCGGTAGCTGCCCTCTGACTGCATCGAA TTGCTCCCCTACTACGTGCTATATGCGCTTACGAT CGTACGAAGATTTATAGAATGCTGCTACTGCTCC CTTATTCGATAACTAGCTCGATTATAGCTACGATG

Sequenced DNA is compared with DNA in a barcode database

Let's do a BLAST

Descrip	ptions	Graphic Summary	Alignments	Taxonomy							
Seque	ences pro	oducing significant a	lignments		Download ~	Manage	e Colu	mns ~	Sho	ow 10	00 🗸 🕜
sele	lect all 0s	equences selected				GenB	ank	Graphie	cs D	istance t	ree of result
			C	Description		Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<u>Ae</u>	edes vexans	voucher BIOUG01574-F08 cy	tochrome oxidase sub	unit 1 (COI) gene, partial cds; n	nitochondrial	1053	1053	100%	0.0	99.83%	KR694809.1
Ae	edes vexans	voucher BIOUG01519-A06 cy	tochrome oxidase sub	unit 1 (COI) gene, partial cds; n	nitochondrial	1053	1053	100%	0.0	99.83%	KT113440.1
Ae	edes vexans	voucher BIOUG05112-D01 cy	tochrome oxidase sub	unit 1 (COI) gene, partial cds; n	nitochondrial	1053	1053	100%	0.0	99.83%	KM971547.
Ae	edes sp. BO	LD:AAA7067 voucher BIOUG0	8859-D04 cytochrome	oxidase subunit 1 (COI) gene,	partial cds; mitochondrial	1053	1053	100%	0.0	99.83%	KM910290.
	Culicinae sp. BOLD:AAA7067 voucher BIOUG03954-A01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial								0.0	99.83%	KP039751.
Ae	edes vexans	voucher BIOUG24039-B11 cy	tochrome oxidase sub	unit 1 (COI) gene, partial cds; n	nitochondrial	1051	1051	99%	0.0	99.83%	KT707504.1
Ae	edes vexans	voucher BIOUG27453-F12 cy	tochrome oxidase sub	unit 1 (COI) gene, partial cds; n	nitochondrial	1049	1049	100%	0.0	99.66%	MF820054.

Basic Local Alignment Search Tool

- An <u>algorithm</u> for searching a <u>database</u> of sequences
- "Google for DNA" (although works with any biological sequence, and started before Google ~1990 vs 1998)
- NCBI is the most popular interface, but this is software that can be run anywhere (including Subway)

BLAST algorithm analogy

Query sequence ACTGACATCGGGGGTGCTACG

Database

Where in the DNA should we look for the "Barcode"?

Humans share greater than 99% of their DNA with other humans

Photo Credit: https://www.broadinstitute.org/files/styles/landing_page/public/genericpages/images/circle/MPG-mosaic_385x300.png?itok=B5zrVgYz

Photo credit: https://www.cnbc.com/2015/09/02/can-you-find-the-forgery.html

Photo credit: https://www.cnbc.com/2015/09/02/can-you-find-the-forgery.html

>Human Tubulin –Black?

>Human Tubulin –White?

>Human Tubulin –Asian?

Almost everywhere we look in our (human) genome, we all look the same

Cytochrome c oxidase I (COI)

Photo credit:

Structure: https://en.wikipedia.org/wiki/Cytochrome_c_oxidase_subunit_I#/m edia/File:PDB_locc_EBI.jpg Genome map: Emmanuel Douzery; https://en.wikipedia.org/wiki/Cytochrome_c_oxidase_subunit_I#/m

edia/File:Map_of_the_human_mitochondrial_genome.svg

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Choosing a barcoding locus

There are many criteria that go in to selecting an appropriate locus (location in the genome) that can serve as a barcode.

Three of them include:

- Universality
- Discrimination
- Robustness

Universality

Since barcoding protocols (typically) amplify a region of DNA by PCR, you need to choose a DNA sequence that every species has

Universality

Since barcoding protocols (typically) amplify a region of DNA by PCR, you need to choose a DNA sequence that every species has

Universality

Since barcoding protocols (typically) amplify a region of DNA by PCR, you need to choose a DNA sequence that every species has

3.0.3.3

Carnivores	Omnivores	Herbivores
Cat	• Pig	• Cow
3.1.3.1	3.1.4.3	0.0.3.3
3.1.2.1	3.1.4.3	4.0.3.3
• Dog	Human	 Horse
3.1.4.2	2.1.2.3	3.1.3/4.3
3.1.4.3	2123	3.1.3.3
	2.1.2.0	 Rabbit
		2.0.3.3
		1.0.2.3
Photo credit:		 Sheep
Dental formula https://slideplayer.com/slide/10972461/		0.0.3.3
Animal diagrams https://vet-science.blogspot.com/2012/01/dent	tition-in-sheep-and-goat.html	3033

Cold Spring Harbor Laboratory

DNA LEARNING CENTER

CSH

Discrimination

Barcoding regions must be different for each species. Ideally you are looking for a single DNA locus which differs in each species

Discrimination

Barcoding regions must be different for each species. Ideally you are looking for a single DNA locus which differs in each species

HUMAN HAIR

Photo credit Human hair https://lewigs.com/human-hair-color-101/

Discrimination

Barcoding regions must be different for each species. Ideally you are looking for a single DNA locus which differs in each species

Photo credit http://loreal-dam-videos-corp-encdn.brainsonic.com/corpen/20160330pm/2016033 0-170533-c4bb4cb7/picture_photo_3eadc4.jpg

Discrimination (but not too much)

Fail: Sequence is completely conserved, good for PCR, but uninformative as barcode

	•		1					•••									1.1.1			1.1.1	•••				
	•			10		2	20			- 30	0		4	10			50			60			70		
Species 1		atgt	ccgg	gc <mark>t</mark> a	ag <mark>e</mark> g	cga	⊂g	tac	gat	cag	g <mark>et</mark> g	gtga	tct	ago	ga	ggt	acg	<mark>st</mark> ag	ttt	tgc	atg	cat	ga	cag	jaga <mark>t</mark>
Species 2	2	atgt	ccgg	gcta	ag <mark>c</mark> g	cga	⊂g	tac	gat	cag	g <mark>et</mark> g	g ga	tct	ago	gao	ggt	acg	gt ag	ttt	tgc	atg	cat	ga	cag	jagat
Species 3	3	atgt	ccgg	gota	ageg	cga	cg	tac	gat	cag	g <mark>et</mark> g	g ga	tct	ago	ga	ggt	acg	gtag (ttt	tge	atg	cat	ga	cag	jaga
Species 4	Ł	atgt	ccgg	gota	ageg	cga	cg	tac	gat	cag	gete	g ga	tct	ago	ga	gg	acg	gtag	ttt	tge	atg	cat	ga	cag	jaga
Species 5	5	atgt	ccgg	gota	ageg	cga	cg	tac	gat	cag	gete	gtga	tct	ago	ga	ggt	acg	gtag (ttt	tge	atg	cat	ga	cag	jaga
Speices 6	5	atgt	ccgg	gota	agcg	cga	cg	tac	ga	cac	g <mark>e t</mark> e	g ga	tct	ag	ga	gg	aco	<mark>rtag</mark>	ttt	tgca	a g	cat	ga	cac	jaga

Discrimination (but not too much)

Fail: Sequence shows no conservation, impossible for PCR, but good as barcode

	•								
	-		10	20	30	40	50	60	70
Species	1	cttgaac	gaactcct	gcactgca <mark>c</mark> c	t <mark>c</mark> ta <u>a</u> ctgct	gggtta <mark>agct</mark>	cgttgctag	gaggtc <mark>atc</mark> a	atggggtgg <mark>cg</mark> aaac
Species	2	agactt	tt <u>a</u> ttggc	atgagagcac	a <mark>c</mark> gg <mark>t</mark> aggcga	a <mark>cttagt</mark> aa <mark>a</mark> g	ctcgcgagg	gttaag <u>g</u> a <mark>c</mark> o	ccaacggtt <mark>c</mark> ctgga
Species	3	caaagt	ta <mark>c</mark> taatc	tgtccgaa <mark>c</mark> c	g <mark>e</mark> gcacaatag	g <mark>t</mark> aaggg <mark>aagc</mark>	attgga <mark>a</mark> ag	tcaaga <mark>a</mark> aat	tgcgtagctagccta
Species	4	acttgc	aa <mark>c</mark> gc <mark>a</mark> aa	cgcttaaaat	catt <mark>t</mark> ggtag <mark>d</mark>	tcatgtacag	acgctaatc	tcagac <mark>a</mark> ggo	ccctaagg <mark>c</mark> cggat
Species	5	aaaacct	cc <mark>c</mark> tcaat	tcagcatc <mark>c</mark> t	cata <mark>t</mark> cagtc	t caaaagaag	tggactacg	gattat <mark>to</mark> a	agaaacgtg <mark>agggtt</mark>
Speices	6	gcatgtt	ct <mark>c</mark> aa <mark>a</mark> at	agactcgtcg	a <mark>c</mark> gc <mark>t</mark> ggctc	agacggacg	atgtccgtg	ataagg <mark>a</mark> a <mark>c</mark> o	caatattct <mark>cg</mark> cgcg

Discrimination (but not too much)

Win: Sequence shows some (ideally ~70%) conservation, good for PCR, good as barcode

	• 111				111					111	• • •		1	111					111	•••			•••
	•		10			20			30			40			50)	70				
Species 1	. at	gge	<mark>jeget</mark> a	gege	gat	egt	c <mark>c</mark> g	a <mark>tc</mark> aa	actg	tga	t <mark>c</mark> t	ageg	<mark>ja</mark> ago	tac	g <mark>t</mark> ag	caa	a <mark>t</mark> g	cat	gct	t <mark>c</mark> ga	a <mark>t</mark> c	agag	gat
Species 2	at at	g <mark>-cc</mark> gg	g <mark>eget</mark> a	gege	gat	cgt	a <mark>c</mark> g	a <mark>tc</mark> aa	actg	tga	tct	ageg	j <mark>ac</mark> go	tac	gtag	ctt	t <mark>t</mark> g	cat	gca	t <mark>e</mark> ga	atc	agag	gat
Species 3	; <mark>at</mark>	g <mark>tee</mark> gg	g <mark>eget</mark> a	gtgo	gat	cgt	c <mark>c</mark> g	a <mark>tc</mark> aa	actg	tga	tct	ageg	j <mark>ac</mark> go	taco	gtag	cta	a <mark>t</mark> g	cat	gca	t <mark>c</mark> ga	atc	agag	gat
Species 4	a a t	g <mark>tee</mark> gg	g <mark>eget</mark> a	gtgo	gat	⊂gt	a <mark>c</mark> g	a <mark>tc</mark> aa	actg	ca	tct	ageg	j <mark>ac</mark> go	too	gtag	ctt	t <mark>t</mark> g	cat	gca	tega	atc	agag	gat
Species 5	5 <u>e</u> t	g <mark>tee</mark> gg	g <mark>eget</mark> a	gtgo	gat	cg t	a <mark>c</mark> g	a <mark>tc</mark> aa	actg	ca	tct	ageg	j <mark>ac</mark> go	tac	gtag	ctt	t <mark>t</mark> g	cat	gca	tega	atc	agag	gat
Speices 6	; <mark>at</mark>	g <mark>te</mark> tge	gegeta	gege	gat	g	a <mark>c</mark> g	a <mark>tc</mark> a	g <mark>e g</mark>	ga	tct	ageo	j <mark>ac</mark> go	tac	<mark>j a</mark> g	cta	atg	cat	gca	t <mark>c</mark> ga	atc	agag	ja

Robustness

Since barcoding protocols (typically) amplify a region of DNA by PCR, also need to select a locus that amplifies reliably and sequences well

Photo credit https://www.bio-rad.com/es-mx/applicationstechnologies/pcr-troubleshooting?ID=LUSO3HC4S

Choosing a barcoding locus

Cytochrome Oxidase C subunit 1 (COI):

- Universal
- Discriminating
- Robust

Photo credit: https://en.wikipedia.org/wiki/Cytochrome_c_oxidase#/media/File:Cmplx4.PNG

Reference data and phylogenetics

Experimental components/design

Materials

- We have DNA from unknown mosquito samples
- We can obtain DNA from known samples

Hypothesis

 We can use computational methods (BLAST/phylogenetic analysis) to infer the species

Controls

DNA LEARNING CENTER

- We have sensitivity controls (sequence quality, BLAST parameters)
- We have outgroup sequences (non-mosquito, negative controls) and known samples (positive controls)
 Cold Spring Harbor Laboratory

Intro to Multiple Sequence Alignment

To compare sequence features (nucleotides, amino acids, etc.) we need to line them up

Photo credit: https://www.pexels.com/photo/jigsaw-puzzle-1586950/

Warning: Analogy (useful for discussion but not the whole picture)

THEFISHISINTHEWATER TH'FESHISINTH'WATER DEVISISINHETWATER DIEVISISINDIEWATER DERFISCHISTIMWASSER FISKINERÍVATNI

ENGLISH SCOTTS DUTCH AFRIKAANS GERMAN ICELANDIC

. . . . | | | | 15 5 THEFISHISI NTHEWATER-TH-FESHISI NTH-WATER--D-EVISISI NHETWATER--DIEVISISI NDIEWATER--DERFISCHI STIMWASSER ----FIS-KI NERIVATNI-

ENGLISH SCOTTS DUTCH AFRIKAANS GERMAN ICELANDIC

5	15 '
THEFISHISI	NTHEWATER-
TH-FESHISI	NTH-WATER-
-D-EVISISI	NHETWATER-
-DIEVISISI	NDIEWATER-
-DERFISCHI	STIMWASSER
FIS-KI	NERIVATNI-

Colored at 60% identity

. . . . | | | | 15 5 THEFISHISI NTHEWATER-ENGLISH TH-FESHISI NTH-WATER-SCOTTS DUTCH -D-EVISISI NHETWATER--DIEVISISI NDIEWATER-AFRIKAANS -DERFISCHI STIMWASSER GERMAN ----FIS-KI NERIVATNI-ICELANDIC

ENGLISH SCOTTS DUTCH AFRIKAANS GERMAN ICELANDIC

ENGLISH SCOTTS DUTCH AFRIKAANS GERMAN ICELANDIC

ENGLISH SCOTTS DUTCH AFRIKAANS GERMAN ICELANDIC

Number of (global) alignments for 2 sequences of length n

Photo credit: https://www.pexels.com/photo/jigsaw-puzzle-1586950/

Number of (global) alignments for 2 sequences of length n

So, for 2 sequences (n=100) $\approx 10^{77}$ *

- We need software!

Photo credit: https://www.pexels.com/photo/jigsaw-puzzle-1586950/

*(some are trivial)

CLUSTAL alignment algorithm

ClustalW steps

Photo credit: https://slideplayer.com/slide/5155996/

Making phylogenetic trees

Tree relationships

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Tree relationships

This is not a phylogenetic tree

A phylogenetic tree is a <u>hypothesis</u> about how species may be related

Photo credit https://en.wikipedia.org/wiki/File:Phylogenetic_tree.svg

Trees can be created from (and therefore reflect) characteristics/traits

Photo credit https://kids.britannica.com/students/assembly/view/235364

Trees can be created from (and therefore reflect) characteristics/traits

Photo credit https://wildlifesnpits.wordpress.com/2014/03/22/understanding-phylogenies-terminology/

Photo credit https://wildlifesnpits.wordpress.com/2014/03/22/understanding-phylogenies-terminology/

&CSH &

DNA LEARNING CENTER

Tree Vocabulary

- Taxa: Individual species
- Tip: The endpoints of a tree
- Node: A point where branches split
- Branch: Any collection after a node

Photo credit https://wildlifesnpits.wordpress.com/2014/03/22/understanding-phylogenies-terminology/

Tree experiments

- Experiment 1: Unknown Mosquitos and outgroup
 - Method: neighbor joining
- Experiment 2: Unknown Mosquitos and outgroup
 - Method: maximum likelihood
- Experiment 3: Unknown Mosquitos + BLAST hits and outgroup
 - Method: neighbor joining
- Experiment 4: Unknown Mosquitos + BLAST hits and outgroup
 - Method: maximum likelihood

Trees are also computationally intensive

Number of possible rooted trees for n sequences

= (2n-3)! / (2ⁿ⁻² (n-2))!

2 sequences:	1
3 sequences:	3
4 sequences:	15
5 sequences:	105
6 sequences:	954
7 sequences:	10395
8 sequences:	135135
9 sequences:	2027025
10 sequences:	34459425
51 sequences:	>10 [®] (nb of particles in the universe)
51 sequences:	>10 [®] (nb of particles in the universe)

Photo credit: https://www.slideshare.net/sebastiendelandtsheer/phylogenetics1

• There is no one "best" method

• There is no one "best" method

Neighbor joining:

"distance-based" method of tree building

• There is no one "best" method

Neighbor joining:

- "distance-based" method of tree building
- a matrix of the sequences is created based on distance between each pair of sequences in multiple alignment

• There is no one "best" method

Neighbor joining:

- "distance-based" method of tree building
- a matrix of the sequences is created based on distance between each pair of sequences in multiple alignment
- distance is related to the number of mismatches between the sequences

Bootstrap values (how we evaluate NJ trees):

 columns in the sequence alignment randomly resampled to make many new alignments (DNA subway does this 100x)

Bootstrap values (how we evaluate NJ trees):

- columns in the sequence alignment randomly resampled to make many new alignments (DNA subway does this 100x)
- a matrix of the sequences is created

Bootstrap values (how we evaluate NJ trees):

- columns in the sequence alignment randomly resampled to make many new alignments (DNA subway does this 100x)
- a matrix of the sequences is created
- each bootstrap value is the number of times that particular relationship appears in the 100 resampled trees

Bootstrap values (how we evaluate NJ trees):

- columns in the sequence alignment randomly resampled to make many new alignments (DNA subway does this 100x)
- a matrix of the sequences is created
- each bootstrap value is the number of times that particular relationship appears in the 100 resampled trees
- Values of 70 and above are "plausible"; above 95 considered highly supported

Maximum likelihood:

 Attempts to take into account observed patterns of how nucleotides and amino acids change over time. For instance, mutations from C to T are more common than mutations of C to A.

Maximum likelihood:

- Attempts to take into account observed patterns of how nucleotides and amino acids change over time. For instance, mutations from C to T are more common than mutations of C to A.
- The tree with highest overall likelihood score is accepted as the best estimate of the relationships between sequences.

Tree building methods

Maximum likelihood:

- Attempts to take into account observed patterns of how nucleotides and amino acids change over time. For instance, mutations from C to T are more common than mutations of C to A.
- The tree with highest overall likelihood score is accepted as the best estimate of the relationships between sequences.
- The length of the branches between nodes is also a measure of the confidence of the relationships. Very short branches separating sequences have lower confidence and the relationships are less certain, while longer branches are better supported.

Summary

Course Learning Goals

- Learn how DNA can be used to identify unknown organisms
- Understand how we obtain DNA Sequence and access its quality
- Use BLAST* to compare an unknown DNA Sequence to known sequences
- Compare DNA Sequences using phylogenetics

*AP Bio (Lab 3 – Comparing DNA Sequences)

See the handouts for even more explanations and activities

DNALC Website and Social Media

dnalc.cshl.edu

dnalc.cshl.edu/dnalc-live

