CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

DNALCH Barcoding Bioinformatics Part II

Jason Williams

Cold Spring Harbor Laboratory, DNA Learning Center

williams@cshl.edu

@JasonWilliamsNY

DNALC Live

This is an experiment; give us feedback on what you would like to see!

DNALC *Live*

- Provide genetics, molecular biology, and bioinformatics learning resources
- Laboratory and computer demos, short online courses for middle school, high school, and the general public
- Interviews with scientists, help for teachers
- At-home activities, social media contests, and more

DNALC Website and Social Media

dnalc.cshl.edu

dnalc.cshl.edu/dnalc-live

DNALC Website and Social Media

youtube.com/DNALearningCenter

facebook.com/cshldnalc

@dnalc

@dna_learning_center

Barcoding Bioinformatics Part II

Who is this course for?

- Audience(s): US AP Biology (high school grades 10-12) AND Intro undergraduate biology
- Format: 3 sessions (1 per week); ~ 45 minutes each
- Exercises: Follow along with our online bioinformatics tool DNA Subway
- Learning resources: Slides and packet available (teachers can also request the teacher edition)

Course Learning Goals

- Learn how DNA can be used to identify unknown organisms
- Understand how we obtain DNA Sequence and access its quality
- Use BLAST* to compare an unknown DNA Sequence to known sequences
- Compare DNA Sequences using phylogenetics

*AP Bio (Lab 3 – Comparing DNA Sequences)

Lab Setup

 We will be using DNA Subway – You can get a free account at cyverse.org (optional)

Barcoding Bioinformatics Part II

(Sequence cleaning and BLAST)

Steps for today's session

- Recap on our experimental dataset
- Review of sequence quality
- Sequence cleaning and pairing
- Introduction to BLAST

Recap of the dataset

Steps to DNA Barcoding

ACGAGTCGGTAGCTGCCCTCTGACTGCATCGAA TTGCTCCCCTACTACGTGCTATATGCGCTTACGAT CGTACGAAGATTTATAGAATGCTGCTACTGCTCC CTTATTCGATAACTAGCTCGATTATAGCTACGATG

Sequenced DNA is compared with DNA in a barcode database

Example barcoding experiment

Cold Spring Harbor Laboratory DNA LEARNING CENTER Mary Acheampong, Bobby Glover, and Marisa VanBrakle

Mentor: Allison Granberry Hostos-Lincoln Academy of Science, The Bronx

2012 UBP Grand Prize Winners

Example barcoding experiment

	Different	Forms of Sa	mples Tested	
Capsule	Tablet	Tea	Seed	Leaf
0-10	•		ALK HE	S I

Sample	Form	DNA	DNA Results
Letter		Expected	
	Capsule	Ginkgo	Rice: Oryza
Α		biloba	rufipogon
	Capsule	Ginkgo	Rice: Oryza
в		biloba	rufipogon
	Capsule	Ginkgo	Rice: Oryza
с		biloba	rufipogon
	Tablet	Ginkgo	No sequence
D		biloba	available.
	Capsule	Ginkgo	Rice: Oryza
Е		biloba	rufipogon
	Liquid	Ginkgo	No sequence
F		biloba	available
	Capsule	Ginkgo	No sequence
G		biloba	available
	Tea	Ginkgo	Other rbcL DNA
н		biloba	present but not
			Mentha piperita
L	Capsule	Ginkgo	Rice: Oryza

Photograph by Michele M. Cutwa, University of Florida.

Anopheles larva

Culex larva

Photograph by Michelle Cutwa-Francis, University of Florida.

Cold Spring Harbor Laboratory DNA LEARNING CENTER

CSH S

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Why does this matter?

Aedes:

- . Chikungunya
- . Dengue fever
- . Lymphatic filariasis
- . Rift Valley fever
- . Yellow fever
- . Zika

Anopheles:

- . Malaria
- . Lymphatic filariasis

Culex:

- Japanese encephalitis
- . Lymphatic filariasis
- . West Nile fever

Experimental components/design

Materials

- We have DNA from unknown mosquito samples
- We can obtain DNA from known samples

Experimental components/design

Materials

- We have DNA from unknown mosquito samples
- We can obtain DNA from known samples

Hypothesis

 We can use computational methods (BLAST/phylogenetic analysis) to infer the species

Experimental components/design

Materials

- We have DNA from unknown mosquito samples
- We can obtain DNA from known samples

Hypothesis

 We can use computational methods (BLAST/phylogenetic analysis) to infer the species

Controls

DNA LEARNING CENTER

- We have sensitivity controls (sequence quality, BLAST parameters)
- We have outgroup sequences (non-mosquito, negative controls) and known samples (positive controls)
 Cold Spring Harbor Laboratory

Review of sequencing and quality

DNA Sequencing

Cycle Sequencing

https://dnalc.cshl.edu/resources/animations/cycseq.html

Chromatogram/Electropherogram

Some sequence examples...

High Quality Sequence

Acceptable Quality Sequence

Low Quality Sequence (multiple base calls per position)

Low Quality Sequence (no base calls)

Phred scores...

Phred Score	Error (bases miscalled)	Accuracy			
10	1 in 10	90%			
20	1 in 100	99%			
30	1 in 1,000	99.9%			
40	1 in 10,000	99.99%			
50	1 in 100,000	99.999%			

If 99% was good enough

If things only work correctly 99.9% of the time...

- 12 newborns will be given to the wrong parents daily.
- 114,500 mismatched pairs of shoes will be shipped/year.
- 18,322 pieces of mail will be mishandled/hour.
- 2,000,000 documents will be lost by the IRS this year.
- 2.5 million books will be shipped with the wrong covers.
- Two planes landed at Chicago's O'Hare airport will be unsafe every day.
- 315 entries in Webster's Dictionary will be misspelled.
- 20,000 incorrect drug prescriptions will be written this year.
- 880,000 credit cards in circulation will turn out to have incorrect
- cardholder information on their magnetic strips.
- 103,260 income tax returns will be processed incorrectly during the year.
- 5.5 million cases of soft drinks produced will be flat.
- 291 pacemaker operations will be performed incorrectly.
- 3056 copies of tomorrow's Wall Street Journal will be missing one of the three sections.

Photo credit http://www.personal.psu.edu/sxt104/class/99percent.html

At what temperature does ice (H₂O) + Chemical "X" melt?

Positive control: What does the effect look like if present?

Positive control: What does the effect look like if present?

Negative control: What does the effect look like if absent?

Positive control: What does the effect look like if present?

Negative control: What does the effect look like if absent?

Sensitivity control: Across what range of values can I measure the effect?

Positive control

Photo credits

https://commons.wikimedia.org/wiki/File:Water_in_a_beaker.JPG http://www.chem.uiuc.edu/webfunchem/temperature/Temp10.htm https://www.dreamstime.com/photos-images/alcohol-thermometer.html

Negative control

Sensitivity control

Positive control

Photo credits

https://commons.wikimedia.org/wiki/File:Water_in_a_beaker.JPG http://www.chem.uiuc.edu/webfunchem/temperature/Temp10.htm https://en.clipdealer.com/vector/media/A:17494508?

Negative control

Sensitivity control

Phred are our measure of quality (signal/noise)

Lower score = more noise than signal

Bi-directional sequencing

Photo credit https://www.omicsonline.org/articles-images/CMBO-2-108-g003.html

Reverse complementation

Photo credit https://biology.stackexchange.com/questions/56304/manual-primer-design-for-a-gene-on-the-reverse-strand

Reverse complementation

Photo credit

https://image.slidesharecdn.com/pcrprimerdesignenglishversion-160317161103/95/pcr-primer-design-english-version-10-638.jpg?cb=1458231192

Clean up and consensus

Introduction to BLAST

Basic Local Alignment Search Tool

• An <u>algorithm</u> for searching a <u>database</u> of sequences

Basic Local Alignment Search Tool

- An <u>algorithm</u> for searching a <u>database</u> of sequences
- "Google for DNA" (although works with any biological sequence, and started before Google ~1985)

Basic Local Alignment Search Tool

- An <u>algorithm</u> for searching a <u>database</u> of sequences
- "Google for DNA" (although works with any biological sequence, and started before Google ~1990 vs 1998)
- NCBI is the most popular interface, but this is software that can be run anywhere (including Subway)

Warning: Analogy (useful for discussion but not the whole picture)

BLAST algorithm analogy

Query sequence ACTGACATCGGGGGTGCTACG

Database

BLAST algorithm analogy

Query sequence ACTGACATCGGGGGTGCTACG

Database

BLAST algorithm analogy

Photo credit https://www.nlm.nih.gov/about/2018CJ.html

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

BLAST algorithm analogy – searching by "word"

Break the *Query sequence* Into "words" (k-mers)

ACT GAC ATC GGG GTG CTA CG

Database

BLAST algorithm analogy – searching by "word"

Break the *Query sequence* Into "words" (k-mers)

ACT GAC ATC GGG GTG CTA CG

Database

Let's BLAST a sequence

>mosquito-1F

CTTTAAGTATATTAATTCGTGCTGAATTAAGTCACCCAGGGATATTTAT TGGAAATGATCAAATTTATAACGTAATTGTTACAGCTCATGCATTTATT ATAATTTTTTTATAGTAATACCAATTATAATTGGAGGATTTGGAAATT GATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCATTTCCTCGAAT AAATAATATAAGTTTTTGAATATTACCTCCTTCTTTAACTCTACTACTTT CTAGTTCAATAGTAGAAAATGGAGCAGGGACAGGATGAACAGTTTA TCCTCCTCTTTCATCAGGAACAGCACGGACAGGAGCAGGATGAACAGTTTA AGCAATTTTCTCTCTCTTCATTTAGCAGGGATTTCATCTATTTTAGGAGC AGTAAATTTTATTACTACTGTTATTAATATACGATCATCTGGAATTACTT TAGATCGATTACCTTTTTGTTTGATCTGTAGTAATTACTGCTATTTTA TTACTTTTATCTCTCTCTGTATTAGCTGGAGCTATTACTATTATTAACT GATCGAAATTTAAATACTTCCTTCTTTGACCCAATTGGAGGAGGAGA

https://blast.ncbi.nlm.nih.gov/Blast.cgi

BLAST and controls

CSH Cold Spring Harbor Laboratory

BLAST algorithm analogy – searching by "word"

The *Query sequence* Is aligned to a *Subject* (a sequence in the database)

BLAST algorithm analogy – alignment

Photo credit https://www.ncbi.nlm.nih.gov/books/NBK62051/

Let's do a BLAST

Descrip	ptions	Graphic Summary	Alignments	Taxonomy							
Seque	ences pro	oducing significant a	lignments		Download ~	Manage	e Colu	mns ~	Sho	ow 10	00 🗸 🕜
sele	lect all 0s	equences selected				GenB	ank	Graphie	cs D	istance t	ree of result
			C	Description		Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<u>Ae</u>	Aedes vexans voucher BIOUG01574-F08 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial			1053	1053	100%	0.0	99.83%	KR694809.1		
Ae	Aedes vexans voucher BIOUG01519-A06 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial			1053	1053	100%	0.0	99.83%	KT113440.1		
Ae	Aedes vexans voucher BIOUG05112-D01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial			1053	1053	100%	0.0	99.83%	KM971547.		
Ae	Aedes sp. BOLD:AAA7067 voucher BIOUG08859-D04 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial			1053	1053	100%	0.0	99.83%	KM910290.		
	ulicinae sp. I	BOLD:AAA7067 voucher BIOU	G03954-A01 cytochron	me oxidase subunit 1 (COI) ger	ne, partial cds; mitochondrial	1051	1051	99%	0.0	99.83%	KP039751.
Ae	edes vexans	voucher BIOUG24039-B11 cy	tochrome oxidase sub	unit 1 (COI) gene, partial cds; n	nitochondrial	1051	1051	99%	0.0	99.83%	KT707504.1
Ae	edes vexans	voucher BIOUG27453-F12 cy	tochrome oxidase sub	unit 1 (COI) gene, partial cds; n	nitochondrial	1049	1049	100%	0.0	99.66%	MF820054.

• Max Score: Highest alignment score (according to a formula)

- Max Score: Highest alignment score (according to a formula)
- **Query Cover**: % of the query length included in aligned segment

- Max Score: Highest alignment score (according to a formula)
- Query Cover: % of the query length included in aligned segment
- **E value**: The number of alignments expected by chance with the calculated score or better

- Max Score: Highest alignment score (according to a formula)
- Query Cover: % of the query length included in aligned segment
- **E value**: The number of alignments expected by chance with the calculated score or better
- **Per. Identity**: Highest % identity for a set of aligned segments to the same subject sequence.

Does BLAST tell me what species I have identified?

(Some) Limitations to BLAST

• **Homology**: BLAST is trying to indicate which homologous (related by ancestry) sequences are found in the database

(Some) Limitations to BLAST

- **Homology**: BLAST is trying to indicate which homologous (related by ancestry) sequences are found in the database
- Data base coverage: BLAST returns its best result; that is not guaranteed to be the true result

(Some) Limitations to BLAST

- **Homology**: BLAST is trying to indicate which homologous (related by ancestry) sequences are found in the database
- Data base coverage: BLAST returns its best result; that is not guaranteed to be the true result
- Locus resolution: Barcodes are often good for <u>genus</u>-level resolution

A note on resolution (and controls)

Photo credit http://physwiki.apps01.yorku.ca/index.php?title=Main_Page/BPHS_4090/microscopy_I

Next time:

Multiple sequence alignments and phylogenetics

DNALC Website and Social Media

dnalc.cshl.edu

dnalc.cshl.edu/dnalc-live

