CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

DNALC Barcoding Bioinformatics Part I

Jason Williams

Cold Spring Harbor Laboratory, DNA Learning Center

williams@cshl.edu

@JasonWilliamsNY

DNALC Live

This is an experiment, give us feedback on what you would like to see!

DNALC *Live*

- Provide genetics, molecular biology, and bioinformatics learning resources
- Laboratory and computer demos, short online courses for middle school, high school, and the general public
- Interviews with scientists, help for teachers
- At-home activities, social media contests, and more

DNALC Website and Social Media

dnalc.cshl.edu

dnalc.cshl.edu/dnalc-live

DNALC Website and Social Media

youtube.com/DNALearningCenter

facebook.com/cshldnalc

@dnalc

@dna_learning_center

CSH) CSHL

- Licensed Centers
- Programs Modeled on the DNALC
- Teacher Training Sites (US States and Countries)

Cold Spring Harbor Laboratory

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Barcoding Bioinformatics Part I

Who is this course for?

- Audience(s): US AP Biology (high school grades 10-12) AND Intro undergraduate biology
- Format: 3 sessions (1 per week); ~ 45-60 minutes each
- Exercises: Follow along with our online bioinformatics tool DNA Subway
- Learning resources: Slides and packet available (teachers can also request the teacher edition)

Course Learning Goals

- Learn how DNA can be used to identify unknown organisms
- Understand how we obtain DNA Sequence and access its quality
- Use BLAST* to compare an unknown DNA Sequence to known sequences
- Compare DNA Sequences using phylogenetics

*AP Bio (Lab 3 – Comparing DNA Sequences)

Lab Setup

 We will be using DNA Subway – You can get a free account at cyverse.org (optional)

Barcoding Bioinformatics Part I

(Background and Sequence Quality)

Steps for today's session

- Introduction to Bioinformatics
- Get background on DNA Barcoding
- Learn about our example experiment
- Start an experiment
- Examine DNA sequence quality

Introduction to Bioinformatics

What is Bioinformatics?

In biology, **Bioinformatics** is an interdisciplinary field that develops and improves upon methods for storing, retrieving, organizing and analyzing **biological data**. A major activity in bioinformatics is to develop software tools to generate useful biological knowledge.

- http://en.wikipedia.org/wiki/Bioinformatics - retrieved April 23rd 2013

Bioinformatics is about data

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Bioinformatics is about data

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

DNA Structure

Image Credit: Discovery of DNA Structure and Function: Watson and Crick By: Leslie A. Pray, Ph.D. © 2008 Nature Education Citation: Pray, L. (2008) Discovery of DNA structure and function: Watson and Crick. Nature Education 1(1):100

Bioinformatics is about data

Often, we we are speaking about data in biology, we are talking about DNA Sequence

Bioinformatics is about data

Often, when we are speaking about data in biology, we are talking about DNA Sequence (there are lots of other data, we just won't be talking about that today)

DNA Sequence

Quick Tour

- NCBI Homepage <u>https://www.ncbi.nlm.nih.gov/</u>
- Human Genome: <u>https://www.ncbi.nlm.nih.gov/projects/genome/guide/human/index.shtml</u>
- Corona Virus Genome: https://mra.asm.org/content/9/11/e00169-20

Introduction to Barcoding

How can you identify an organism using just its DNA?

What is DNA Barcoding?

Steps to DNA Barcoding

Organism is sampled

DNA is extracted

"Barcode" amplified

ACGAGTCGGTAGCTGCCCTCTGACTGCATCGAA TTGCTCCCCTACTACGTGCTATATGCGCTTACGAT CGTACGAAGATTTATAGAATGCTGCTACTGCTCC CTTATTCGATAACTAGCTCGATTATAGCTACGATG

Sequenced DNA is compared with DNA in a barcode database

The Start of Barcoding

How many species can you name?

How many Animals did you name? How many mammals? How many plants? How many insects?

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Problem 1: No one know how many species there are.

How many species are there?

Vertebrates	Species	Invertebrates	Species	Plants	Species
Mammals	5,490	Insects	1,000,000	Angiosperms	281,821
Birds	9,998	Mollusks	85,00	Gymnosperms	1,021
Reptiles	9,084	Crustaceans	47,000	Ferns and Allies	12,000
Amphibians	6,433	Corals	2,175	Mosses	16,236
Fishes	31,300	Arachnids	102,248	Green and Red Algae	10,134
Total	62,305	Total (+others)	1,305,250	Total	321,212

•There are currently between 1.5 and 2 million described species

•It is estimated that this number may represent as little as half of the true number of species

• Perhaps more than 1/3 of all species are threatened

(IUCN Red list version 2010.1)

Problem 2: Even though there are millions of species, there is also a lack of agreement on what a "species" means.

What is a species?

Canis lupus

Canis lupus (familiaris)

Anas platyrhynchos

Defining what species are is a complex task

Dependent on many factors

- Interbreeding capabilities
- Morphological variation
- Ecological context
- Genetic similarities

Problem 3: Current taxonomic methods may be inadequate (or at least too slow) to capture vanishing biodiversity

Traditional taxonomies

Leaves <u>alternate proximally</u>, opposite and ultimately <u>decussate distally</u>, $6-16 \times 4-13$ cm; <u>petiole</u> ca. as long as blade, <u>winged</u>, base clasping, <u>basal lobes stipulate</u>, growing as extensions of wings, less than 1 mm wide; blade 5–7-veined, <u>ovate</u>, <u>glabrous</u>, base typically <u>sagittate</u>, <u>margins</u> entire, <u>apex acute</u> to <u>acuminate</u>. <u>Staminate inflorescences</u> <u>axillary</u>, 1–2 per <u>axil</u>, <u>paniculate</u>, <u>fasciculate</u>; <u>panicles</u> bearing flowers <u>singly,bracteolate</u>, in a zigzag pattern along <u>rachis</u>, <u>internodes</u> less than 2 mm; <u>rachis</u> to 25 cm, secondary axes 1–3(–6), <u>fasciculate</u>, less than 3 cm, each subtended by <u>deltate-ovate</u> bracteole shorter than 1 mm. *Pistillate* <u>inflorescences</u> solitary, 4–8(–20)-flowered, 6–35 cm, <u>internodes</u> ca. 1 cm

The body form ranges from <u>hemispherical</u> (e.g., *Cleidostethus*) to <u>elongate</u> oval (e.g., *Clypastraea*) to latridiidlike (e.g., *Foadia*). Corylophids are typically dull brown, but some species have contrasting yellowish-brown patches on the <u>pronotum</u> or <u>elytra</u>. The <u>integument</u> is often densely punctured and may be <u>glabrous</u> or bear short, fine <u>recumbent setae</u>. Most corylophid adults can be diagnosed using the following morphological features: <u>Maxilla</u> with single <u>apical lobe</u>; <u>Mesotrochanter</u> short and strongly oblique; Head usually covered by <u>pronotum</u>; <u>Frontoclypeal suture</u> absent; Antennae elongate with <u>3-segmented club</u>; <u>Procoxal</u> cavities closed externally; Tarsal formula 4-4-4; Pygidium exposed

Sequence is less complex

Leaves <u>alternate proximally</u>, opposite and ultimately <u>decussate distally</u>, $6-16 \times 4-13$ cm; <u>petiole</u> ca. as long as blade, <u>winged</u>, base clasping, <u>basal lobes stipulate</u>, growing as extensions of wings, less than 1 mm wide; blade 5–7-veined, <u>ovate</u>, <u>glabrous</u>, base typically <u>sagittate</u>, margins entire, <u>apex acute</u> to <u>acuminate</u>. <u>Staminate inflorescences axillary</u>, 1–2 per <u>axil</u>, <u>paniculate</u>, <u>fasciculate</u>; <u>panicles</u> bearing flowers <u>singly,bracteolate</u>, in a zigzag pattern along <u>rachis</u>, <u>internodes</u> less than 2 mm; <u>rachis</u> to 25 cm, secondary axes 1–3(–6), <u>fasciculate</u>, less than 3 cm, each subtended by <u>deltate-ovate bracteole</u> shorter than 1 mm. *Pistillate* <u>inflorescences</u> solitary, 4–8(–20)-flowered, 6–35 cm, <u>internodes</u> ca. 1 cm

Complex and Somewhat objective

>Dioscorea alata (matK) gene, partial

ATTTAAATTATGTGTCAGATATATTAATACCCCATCCCATCCCATCTGGAAATCCTGGTTCAAATACTTCAATGCTGGACTCAAGATGTTTCCTCTT TGCATTTATTGCGATTCTTTTCCCACGAATATCATAATTCGAAT AGTTTCATTACTCCGAAAAAACCTATTTACGTGATTTCAATTCAAAGAAA ATAAAAGATTTTTCGAT TCCTATATAATTCTTATGTATTTGAATGTGAATTGTATTAGTTTTTTTCATAAGCAATCCTCTTATTT ACGATCAA GGTCCTCTGGAGTCTTTCTGAGCGAACACATTTCTATGGAAAAATGGGGCATTTTTAGTAGTGTGTTGTAATTATTTTCAGAAGAACCCAATG GTTCTTCAAAGATCCTTTTCTGCATTATGTTCGATATC AAGGAAAAGCAATTCTGGTGTCAAAGGGAACTCGTCTTTGATGAGGAAAATGGAGA TCTTACCTTGTCCATTTTTGGCAATATTATTTTCCATTTTGGTCTCATCCGCATAGGATTCATATAAACCAATTATCAAATTATTCCTTCGTGTTTTC TGGGTTATCTTTCAAATGTACTAATAAATTTTTCCGTGGTAAGGAGTCAAATGTTAGAAAATTCATTTGTAATAGATACTCTTACTAAGAAATT TGATACCAGAGTTTCAGTTATTGCTCTTATTCG ATCATTGTCTAAAGCGAAATTTTGTACCGTATCCGGGCATCCTATTAGTAAGATACTCATATGAAGTCAATATGAA CAAATTTC TCAGATTTGGATATTATTTCGATTTGGTTGGATATGTAGAA

Simple (A,T,G, or C) and objective

Lab: Mosquito Identification

Can we tell the difference between larvae that look (nearly) identical?

Photograph by Michele M. Cutwa, University of Florida.

Anopheles larva

Culex larva

Photograph by Michelle Cutwa-Francis, University of Florida.

Cold Spring Harbor Laboratory DNA LEARNING CENTER

CSH S

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Why does this matter?

Aedes:

- . Chikungunya
- . Dengue fever
- . Lymphatic filariasis
- . Rift Valley fever
- . Yellow fever
- . Zika

Anopheles:

- . Malaria
- . Lymphatic filariasis

Culex:

- Japanese encephalitis
- . Lymphatic filariasis
- . West Nile fever

Why does this matter?

Estimated range of *Aedes aegypti* and *Aedes albopictus* in the United States, 2016*

Aedes aegypti mosquitoes are more likely to spread viruses like Zika, dengue, chikungunya than other types of mosquitoes such as Aedes albopictus mosquitoes.

- These maps show CDC's best estimate of the potential range of Aedes aegypti and Aedes albopictus in the United States.
- · These maps include areas where mosquitoes are or have been previously found.
- Shaded areas on the maps do not necessarily mean that there are infected mosquitoes in that area.

*Maps have been updated from a variety of sources. These maps represent CDC's best estimate of the potential range of Aedes aegypti and Aedes albopictus in the United States. Maps are not meant to represent risk for spread of disease. SOURCE: Zika: Vector Surveillance and Control, www.cdc.gov/zika/vector/index.html

Lab: DNA Sequencing Background

DNA Sequencing

Cycle Sequencing

https://dnalc.cshl.edu/resources/animations/cycseq.html

Some Anopheles DNA...

Anopheles gambiae isolate 10016 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence

GenBank: MK592083.1

GenBank Graphics

Lab: Creating a DNA Subway Project (follow along in the packet)

Working on DNA Subway Blue Line

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Key Concept: Data Quality

Some sequence examples...

High Quality Sequence

Acceptable Quality Sequence

Low Quality Sequence (multiple base calls per position)

Low Quality Sequence (no base calls)

Phred scores...

Phred Score	Error (bases miscalled)	Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%

Next time: Comparing sequences with BLAST

DNALC Website and Social Media

dnalc.cshl.edu

dnalc.cshl.edu/dnalc-live

