CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

RNA-Seq with DNA Subway Part III

Jason Williams

Cold Spring Harbor Laboratory, DNA Learning Center

williams@cshl.edu

@JasonWilliamsNY

DNALC Live

This is an experiment, give us feedback on what you would like to see!

DNALC Website and Social Media

dnalc.cshl.edu

dnalc.cshl.edu/dnalc-live

DNALC Website and Social Media

youtube.com/DNALearningCenter

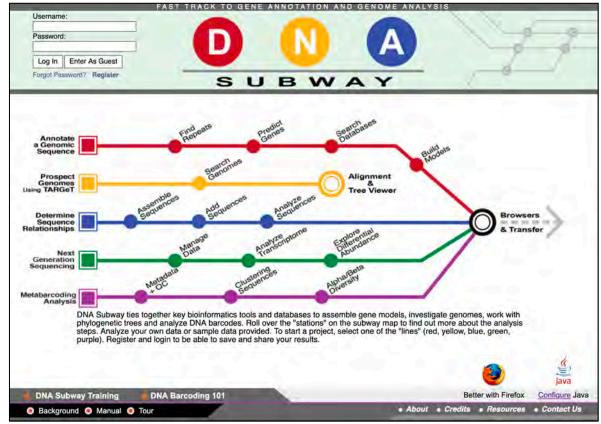
facebook.com/cshldnalc

@dnalc

@dna_learning_center

Who is this course for?

- Audience(s):
 - Undergraduate biology 200 level and up
 - (advanced AP Bio/graduate)
- Format: 3 sessions (1 per week); ~ 45 minutes each
- Exercises: Follow along with our online bioinformatics tool DNA Subway
- Learning resources: Slides and resource sheets available


Course Learning Goals

- Understand the rationale of an RNA-Seq experiment and its design
- Understand how we obtain DNA sequence and access its quality
- Use DNA Subway (FastQC/FastX) to QC sequence data
- Use DNA Subway (Kallisto) to (pseudo)align reads
- Use DNA Subway (Sleuth) to explore RNA-Seq results

Lab Setup

 We will be using DNA Subway – You can get a free account at cyverse.org (required)

RNA-Seq with DNA Subway Part III

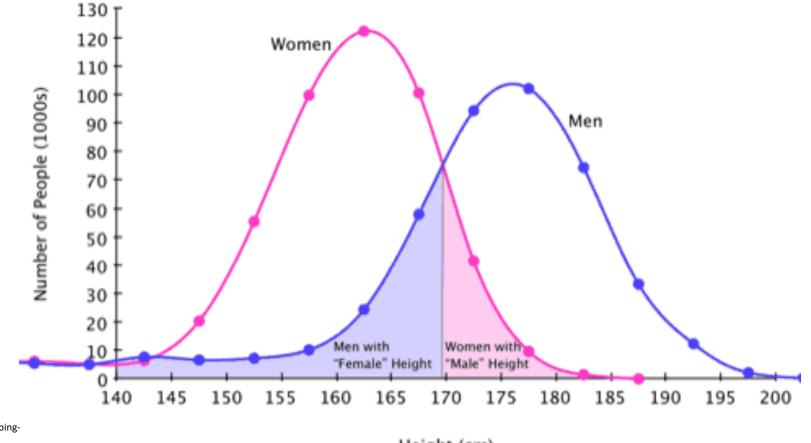
(differential abundance/expression)

Steps for today's session

- Review our progress so far
- Learn about differential abundance
- Visualize and explore our results

Review of RNA-Seq

What is RNA-Seq? - measuring the transcriptome


- RNA-Seq allows us to measure the transcriptome take an account of all transcription occurring in a cell/tissue
- We use the abundance of an RNA transcript as a proxy for the activity of some cellular process (e.g. protein synthesis, regulatory activity)
- We analyze these data to compare samples (e.g. cancerous vs. non-cancerous)

CSH Cold Spring Harbor Laboratory

Key Concept: Variation vs. Difference

Spot the difference – biological variation

https://www.quora.com/What-are-Overlapping-Bell-Curves-and-how-do-they-affect-Quoraquestions-and-answers

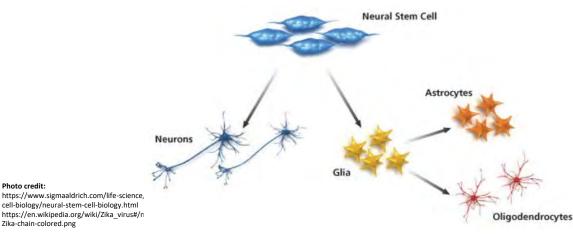
Photo Credit:

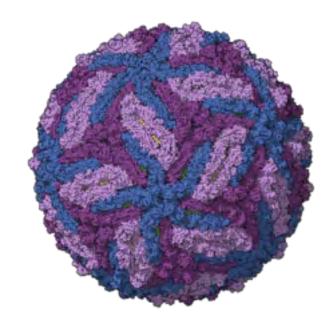
Height (cm)

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Introduction to our data set

RNA-Seq of hNPC – Zika Virus

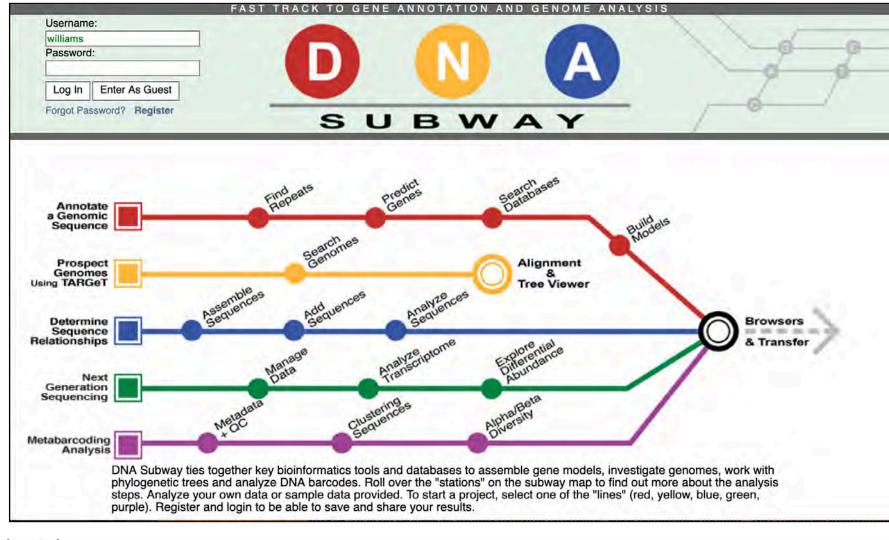

PLOS ONE


G OPEN ACCESS 👂 PEER-REVIEWED RESEARCH ARTICLE

Zika infection of neural progenitor cells perturbs transcription in neurodevelopmental pathways

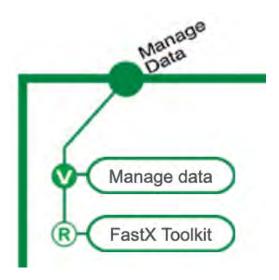
Lynn Yi, Harold Pimentel, Lior Pachter 🖾

Published: April 27, 2017 • https://doi.org/10.1371/journal.pone.0175744 • >> See the preprint


Zika Virus

Cold Spring Harbor Laboratory DNA LEARNING CENTER CSH

Photo credit


Zika-chain-colored.png

Working on DNA Subway Green Line

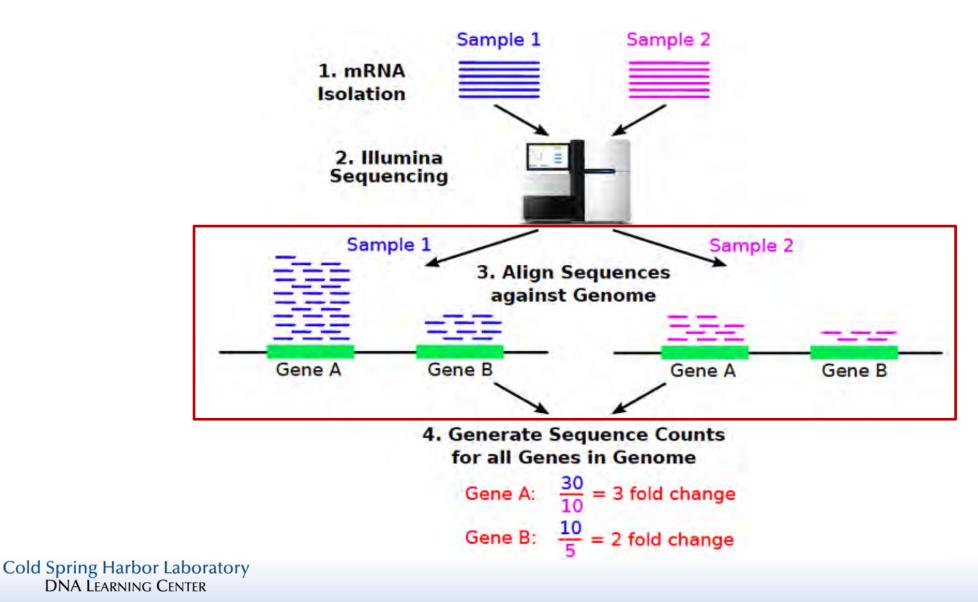
CSH Cold Spring Harbor Laboratory

Working on DNA Subway Green Line

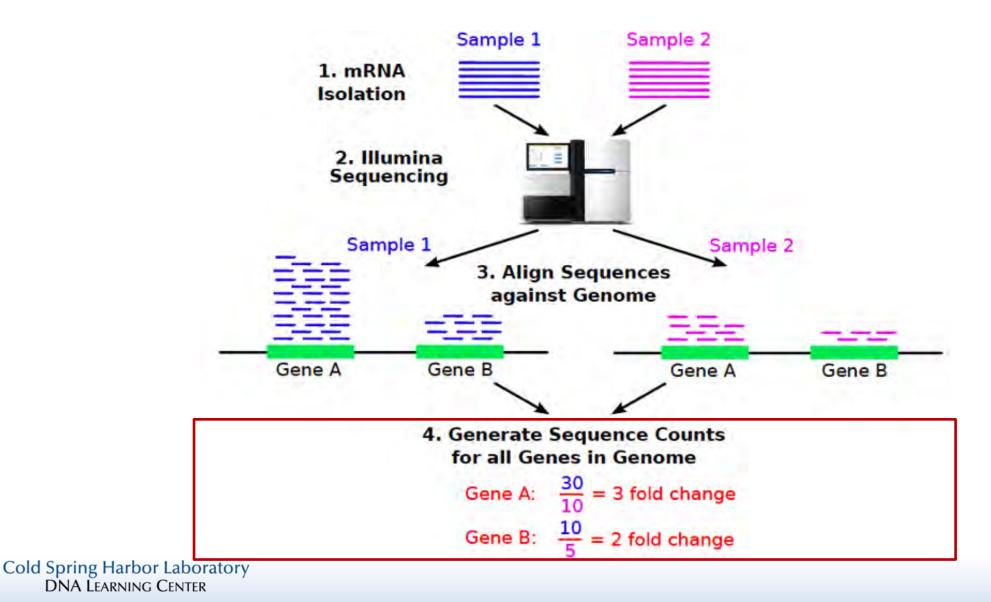
Key Concept: Sequence Quality

Phred scores...

Phred Score	Error (bases miscalled)	Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%


Key Concept: Read Alignment

Intuition: The more reads we observe from a given "gene" the more "active" that gene is



Counting reads

CSH

Counting reads

CSH

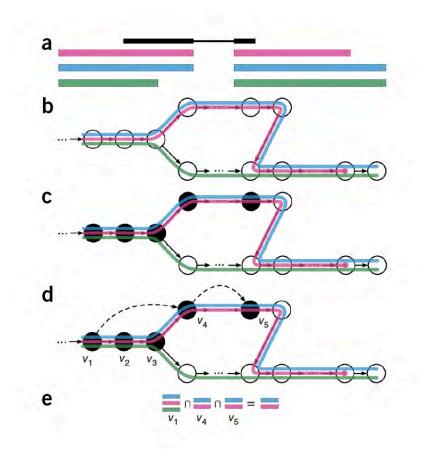
RNA-Seq with Kallisto

nature biotechnology

NATURE BIOTECHNOLOGY VOLUME 34 NUMBER 5 MAY 2016

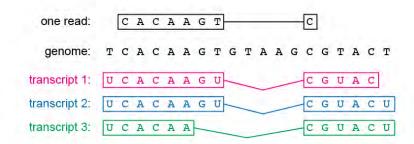
Near-optimal probabilistic RNA-seq quantification

Nicolas L Bray¹, Harold Pimentel², Páll Melsted³ & Lior Pachter^{2,4,5}



Problem: A transcriptome (like a genome) contains thousands of transcripts. How will we match sequence reads with transcripts?

Kallisto – Pseudoalignment



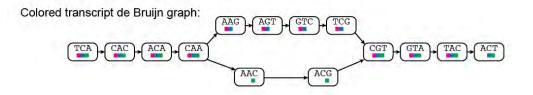

Figure 1 Overview of kallisto. The input consists of a reference transcriptome and reads from an RNA-seq experiment. (a) An example of a read (in black) and three overlapping transcripts with exonic regions as shown. (b) An index is constructed by creating the transcriptome de Bruijn Graph (T-DBG) where nodes (v_1 , v_2 , v_3 , ...) are *k*-mers, each transcript corresponds to a colored path as shown and the path cover of the transcriptome induces a *k*-compatibility class for each *k*-mer. (c) Conceptually, the *k*-mers of a read are hashed (black nodes) to find the *k*-compatibility class of a read. (d) Skipping (black dashed lines) uses the information stored in the T-DBG to skip *k*-mers that are redundant because they have the same *k*-compatibility class. (e) The *k*-compatibility class of the read is determined by taking the intersection of the *k*-compatibility classes of its constituent *k*-mers.

Photo credit: https://www.nature.com/articles/nbt.3519

Kallisto – Pseudoalignment

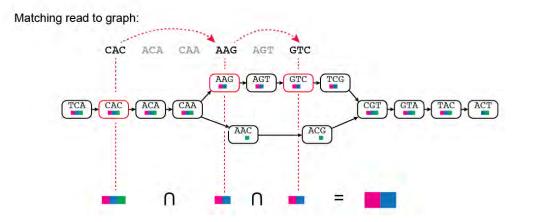


Photo credit: http://mcb112.org/w02/w02-lecture.html

Lab: Pseudoalignment with Kallisto

Lab: Kallisto

Inpu	Left pair	Right pair	Sample name *	Condition *	
	SRR3191542_1-tophat.fastq.gz	SRR3191542_2-tophat.fastq.gz			
1	SRR3191543_1-tophat.fastq.gz	SRR3191543_2-tophat.fastq.gz	la l		Ē
	SRR3191544_1-tophat.fastq.gz 📀	SRR3191544_2-tophat.fastq.gz 💈			
	SRR3191545_1-tophat.fastq.gz 💈	SRR3191545_2-tophat.fastq.gz 💈			

Lab: Kallisto

Left/Right Pair	Sample name	Condition
SRR3191542_1.fastq.gz SRR3191542_2.fastq.gz	Mock1-1	Mock
SRR3191543_1.fastq.gz SRR3191543_1.fastq.gz	Mock2-1	Mock
SRR3191544_1.fastq.gz SRR3191544_2.fastq.gz	ZIKV1-1	Zika
SRR3191545_1.fastq.gz SRR3191545_2.fastq.gz	ZIKV2-1	Zika

See DNA Subway Guide (Green Line) on learning.cyverse.org

	A	В	С	D	E
1	target_id	length	eff_length	est_counts	tpm
2	ENST00000361624.2	1542	1366.02	70979.1	14946.3
3	ENST00000361739.1	684	508.114	25163	14245
4	ENST00000362079.2	784	608.064	18924	8952.1
5	ENST00000361851.1	207	53.9295	1592.53	8494.23
6	ENST00000361899.2	681	505.114	13043.3	7427.79
7	ENST00000361381.2	1378	1202.02	30926	7400.69
8	ENST00000361335.1	297	127.756	3008	6772.67
9	ENST00000331523.6	1923	1747.02	35334.8	5817.9
10	ENST00000361681.2	525	349.373	5789.99	4767.05

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

• target_id: Identifier for the transcript (from Ensembl)

Search Human (<i>Homo sa</i>	piens)		
Search all categories	Search Human		Go
e.g. BRCA2 or 17:63992802-64	038237 or rs699 or osteoarthritis		
Genome assembly: GRC	h38.p13 (GCA_000001405.28)	0.8	Gene annotation
More information and stati	stics		What can I find? Prot cDNA and protein seq
Download DNA sequence	(FASTA)	View karyotype	More about this
Convert your data to GRC	n38 coordinates		Download FAST
Display your data in Enser	nbl		Download GTF
ther assemblies		Example region	Update your old
GRCh37 Full Feb 2014 archive wi	th BLAST, VEP and BioMart 📀 Go		
Comparative genomics			Variation
Vhat can I find? Homologues, cross multiple species.	gene trees, and whole genome alignments	@	What can I find? Sho disease and other phe
More about comparative a	nalveis	Example gene tree	More about varia

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

- target_id: Identifier for the transcript (from Ensembl)
- length: length (nucleotides) of transcript exons

- target_id: Identifier for the transcript (from Ensembl)
- length: length (nucleotides) of transcript exons
- eff_length: length of transcript that was sampled*

*In the original sequencing library, we rarely sample whole entire transcripts, this number accounts for the fragment length of the library

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

- target_id: Identifier for the transcript (from Ensembl)
- length: length (nucleotides) of transcript exons
- eff_length: length of transcript that was sampled*
- est_counts: The estimated number of reads that have mapped to the transcript

*In the original sequencing library, we rarely sample whole entire transcripts, this number accounts for the fragment length of the library

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Key Concept: Normalization (Warning – illustrative "toy" models ahead)

Transcripts per million

• tpm (transcripts per million) normalized counts based on the length of the transcript and total number of sequence reads

Transcripts per million

• tpm (transcripts per million) normalized counts based on the length of the transcript and total number of sequence reads

Transcripts per million
$$\equiv A \cdot \left(\frac{1}{\Sigma(A)}\right) \cdot 10^6$$

Transcripts per million

• tpm (transcripts per million) normalized counts based on the length of the transcript and total number of sequence reads

Transcripts per million
$$\equiv A \cdot \left(\frac{1}{\Sigma(A)}\right) \cdot 10^6$$

$$A = \frac{\text{total reads mapped to gene } \cdot 10^3}{\text{gene length (bp)}}$$

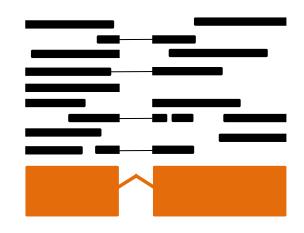
Normalization – gene length Which is longer (bp)?

Gene A

Gene B

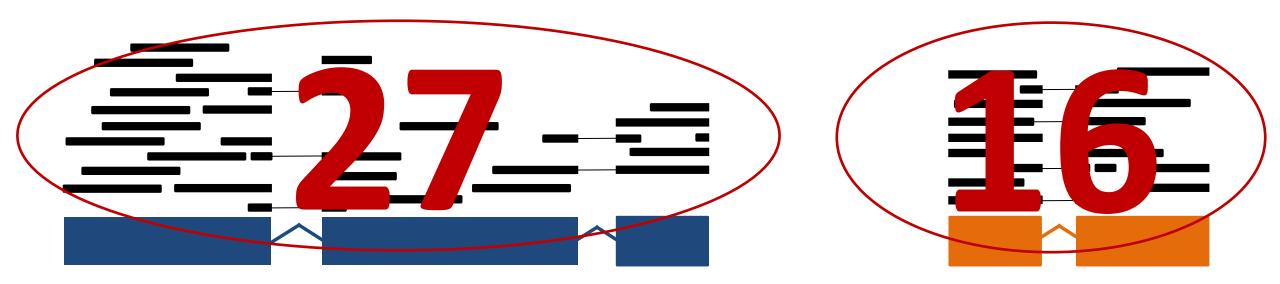
Normalization – gene length Which has more reads?

Gene A (300bp) Gene B

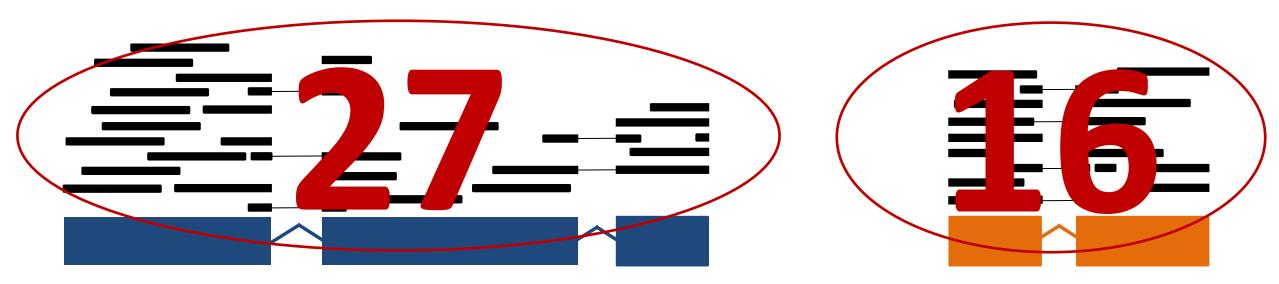

(100bp)

Normalization – gene length

Which has more reads?

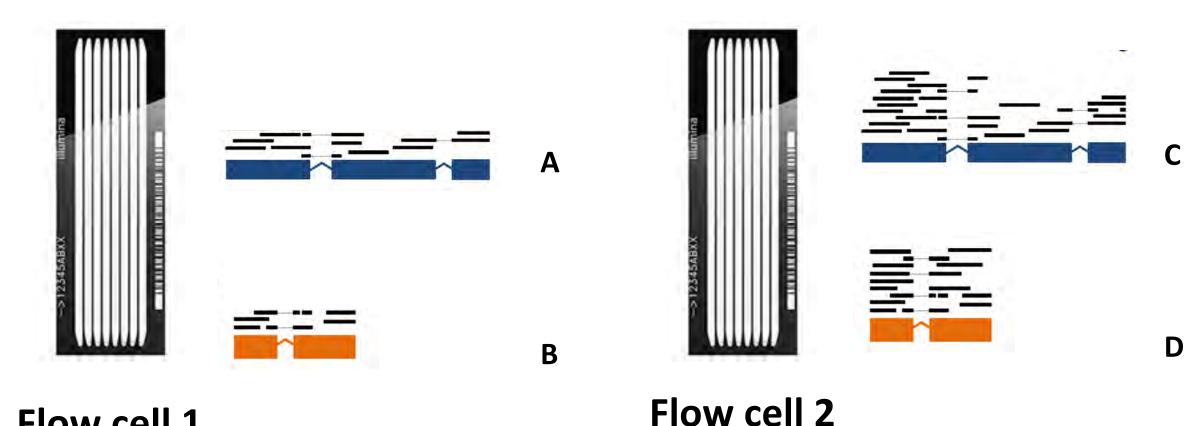


Gene A (300bp) Gene B (100bp)


Normalization – gene length

Gene A (300bp) Gene B (100bp)

Normalization – gene length


Gene A (300bp) Gene B (100bp)

27/300 = 0.09

16/100 = 0.16

Normalization – read depth Which gene is most highly expressed?

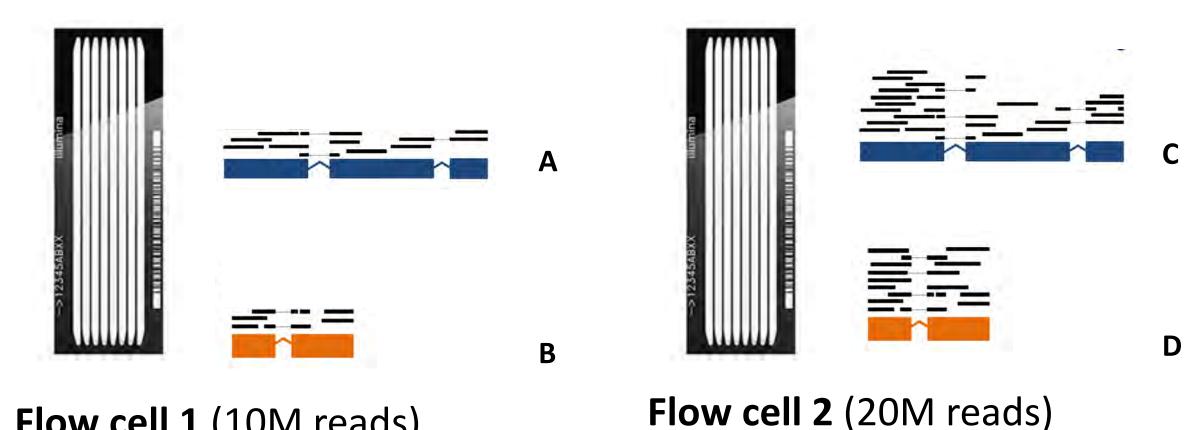

Flow cell 1

Photo credit

https://www.illumina.com/company/news-center/multimedia-images.html

Normalization – read depth Which gene is most highly expressed?

Flow cell 1 (10M reads)

Photo credit

https://www.illumina.com/company/news-center/multimedia-images.html

RNA-Seq with Sleuth

\square nature methods

Brief Communication | Published: 05 June 2017

Differential analysis of RNA-seq incorporating quantification uncertainty

Harold Pimentel, Nicolas L Bray, Suzette Puente, Páll Melsted & Lior Pachter 🖂

Nature Methods 14, 687–690(2017) | Cite this article 6755 Accesses | 264 Citations | 121 Altmetric | Metrics

In an RNA-Seq experiment we need to find "true" differences between samples (while subtracting trivial differences)

Spot the difference

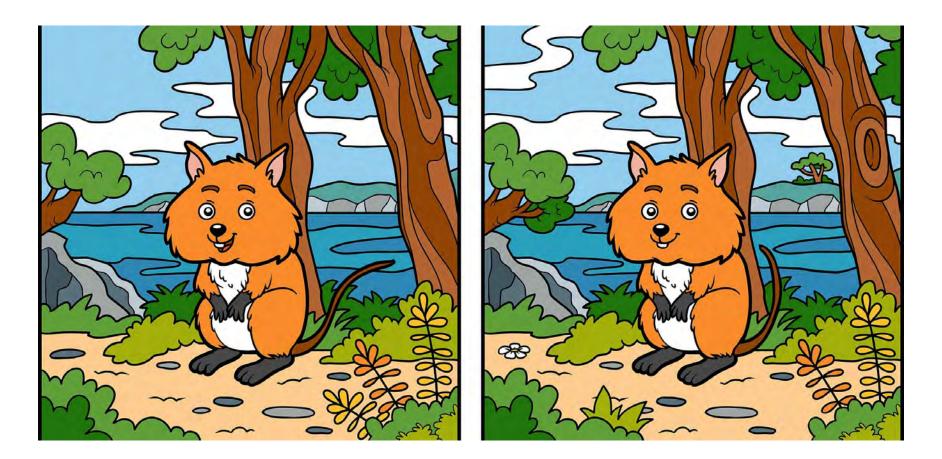


Photo Credit: https://www.rd.com/culture/spot-10-differences-picture/

Spot the difference

Mock – 1, Replicate 1

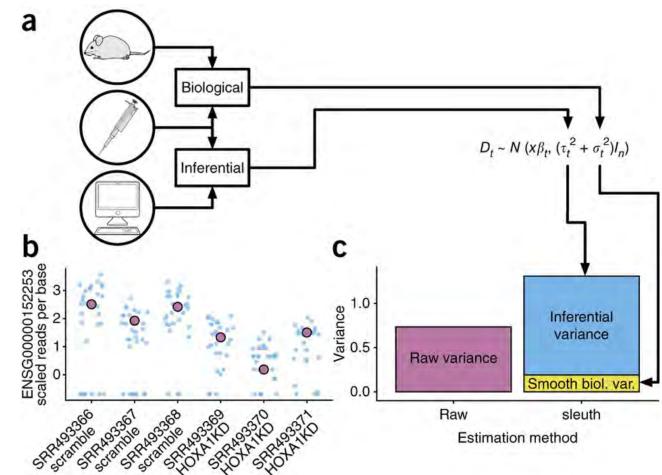
Mock – 1, Replicate 2

2 3

Zika – 1, Replicate 1

Zika – 1, Replicate 2

1	A	B		C	D	Ē
1	target_id	length	1	eff_length	est_counts	tpm
2	ENST00000361624.2		1542	1366.02	70979.1	14946.3
3	ENST00000361739,1		684	508,114	25163	14245
4	ENST00000362079.2		784	608.064	18924	8952.1
5	ENST00000361851,1		207	53.9295	1592.53	8494.23
6	ENST00000361899.2		681	505,114	13043.3	7427.79
7	ENST00000361381,2		1378	1202.02	30926	7400.69
8	ENST00000361335.1		297	127,756	3008	6772,67
9	ENST00000331523.6		1923	1747.02	35334.8	5817.9
10	ENST00000361681.2		525	349.373	5789.99	4767.05


A	B	C	D	E
target_id	length	eff_length	est_counts	tpm
ENST00000361624.2	15	542 1366.02	70979.1	14946.3
ENST00000361739,1		584 508,114	4 25163	14245
ENST00000362079.2	3	608.064	4 18924	8952.1
ENST00000361851,1	3	53.929	5 1592.53	8494.23
ENST00000361899.2	(581 505.114	4 13043.3	7427.79
ENST00000361381,2	13	378 1202.03	2 30926	7400.69
ENST00000361335.1	3	127.750	5 3008	6772.67
ENST00000331523.6	19	1747.02	2 35334.8	5817.9
ENST00000361681.2	1	349.37	5789.99	4767.05

đ	A	8	C	D	E
1	target_id	length	eff_length	est_counts	tpm
z	ENST00000361624.2	13	542 1366.02	70979.1	14946.3
3	ENST00000361739,1	4	584 508,114	25163	14245
4	ENST00000362079.2	3	608.064	18924	8952.1
5	ENST00000361851,1	3	207 53.9295	1592.53	8494.23
5	ENST00000361899.2		581 505,114	13043.3	7427.79
7	ENST00000361381.2	13	378 1202.02	30926	7400.69
8	ENST00000361335.1	3	127.756	5 3008	6772,67
9	ENST00000331523.6	19	923 1747.02	35334.8	5817.9
Ō	ENST00000361681.2	13	525 349.373	5789.99	4767.05

1	A	8	C	D	6
1	target_id	length	eff_length	est_counts	tpm
2	ENST00000361624.2	1543	2 1366.02	70979.1	14946.3
3	ENST00000361739,1	684	4 508,114	25163	14245
4	ENST00000362079.2	784	4 608.064	18924	8952.1
5	ENST00000361851,1	20	7 53.9295	1592.53	8494.23
6	ENST00000361899.2	68	1 505.114	13043.3	7427.79
7	ENST00000361381,2	1378	8 1202.02	30926	7400.69
8	ENST00000361335.1	297	7 127.756	3008	6772.67
9	ENST00000331523.6	192	3 1747.02	35334.8	5817.9
10	ENST00000361681.2	525	5 349.373	5789.99	4767.05

Sleuth linear modeling

Photo credit https://www.nature.com/articles/nmeth.4324/figures/1

Sleuth linear modeling

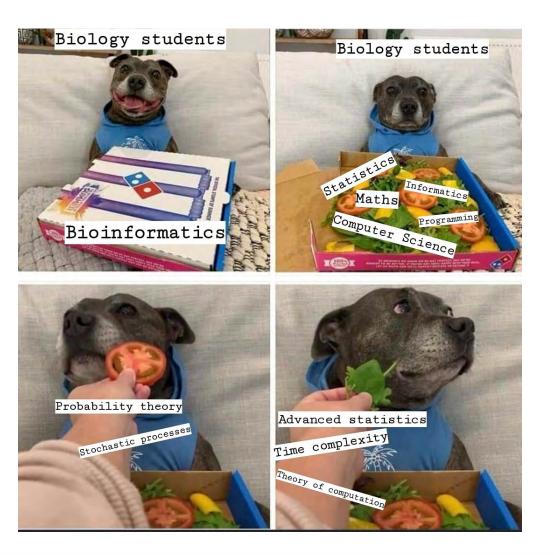


Photo credit https://twitter.com/phylogeo

Lab: Sleuth results

s Sample Heatmap	qval 4.6257e-85 4.6257e-85	b	Search: ext_gene All HYOU1
200000617285.4 00000630669.2	4.6257e-85	b 0.90908	ext_gene
00000617285.4 00000630669.2	4.6257e-85	0.90908	All
00000617285.4	4.6257e-85	0.90908	
00000630669.2	162151		HYOU1
	4.6257e-85	0.90908	
00000307365.3			HYOU1
	3.941e-82	1.3256	DDIT4
00000439211.6	2.3171e-78	-1.7232	DHFR
00000280612.9	3.8927e-77	1.7133	SLC7A11
00000338663.11	1.9313e-70	1.6309	SLC3A2
00000253063.3	7.9561e-66	1.347	SESN2
00000361427.5	2.5113e-64	-0.83316	HMGN2
00000274063.4	5.8317e-64	-1.1304	SFRP2
00000332707.9	3.2939e-58	0.94766	XPOT
10 of 55,351 entries	Previous	1 2 3 4	5 5536 Ne
	00000361427.5 000000274063.4 000000332707.9 0 10 of 55,351 entries	00000274063.4 5.8317e-64 000000332707.9 3.2939e-58	r00000274063.4 5.8317e-64 -1.1304 r00000332707.9 3.2939e-58 0.94766 o 10 of 55,351 entries Previous 1 2 3 4

Comparing to the results of the L. Yi paper

Fig 4. The counts of CHRNA7, another isoform diverging gene, plotted by the sleuth Shiny app.

Visualized here are counts for three transcripts of CHRNA7 across eight samples, colored by infection status.

https://doi.org/10.1371/journal.pone.0175744.g004

Ontology enrichment: ShinyGO

ShinyGO v0.61: Gene Ontology Enrichment Analysis + more

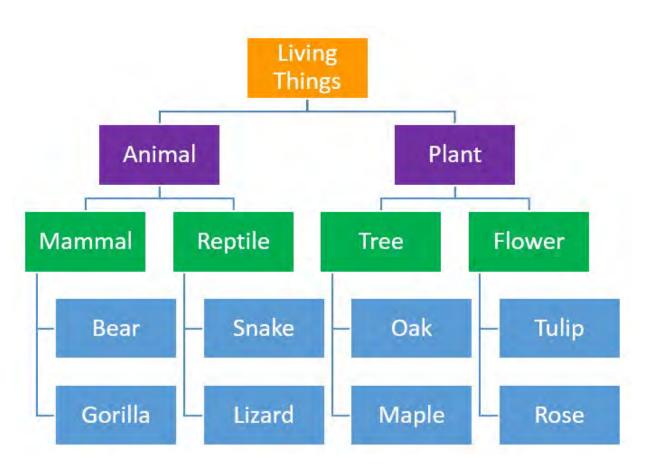
Best matching species	1	•
2. Paste genes	Demo genes	
accepted. Double check needed.	the guessed species, and adjust	t if
3. Submit		
		-
3. Submit P-value cutoff (FDR) 0.05		
P-value cutoff (FDR)	ms to show	

Enrichment Tree Network Genes Groups Plots Genome Promoter STRING ?

2/3/2020: Now published by Bioinformatics.

11/3/2019: V 0.61, Improve graphical visualization (thanks to reviewers). Interactive networks and much more.

5/20/2019: V.0.60, Annotation database updated to Ensembl 96. New bacterial and fungal genomes based on STRING-db!


Just paste your gene list to get enriched GO terms and othe pathways for over 315 plant and animal species, based on annotation from Ensembl (Release 96), Ensembl plants (R. 43) and Ensembl Metazoa (R. 43). An additional 2031 genomes (including bacteria and fungi) are annotated based on STRING-db (v.10). In addition, it also produces KEGG pathway diagrams with your genes highlighted, hierarchical clustering trees and networks summarizing overlapping terms/pathways, protein-protein interaction networks, gene characterristics plots, and enriched promoter motifs. See example outputs below:

	Enrichment FDR	Genes in list	Total genes	Functional Category
	6.5E-220	86	101	DNA damage checkpoint
10	5.3E-215	86	108	DNA integrity checkpoint
	3.2E-188	86	169	Cell cycle checkpoint
	1.1E-131	87	659	Cellular response to DNA damage stimulus
	1.2E-113	87	1039	Cell cycle process
	3.6E-102	87	1395	Cell cycle
	1 1E-100	45	57	Mitotic DNA integrity checkpoint
	5.0E-99	87	1517	Cellular response to stress
	1.9E-98	43	51	Mitotic DNA damage checkpoint

http://bioinformatics.sdstate.edu/go/

Gene ontology

Photo credit:

https://thepeakperformancecenter.com/educational-learning/learning/memory/stages-of-memory/organization-long-term-memory/

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Gene ontology

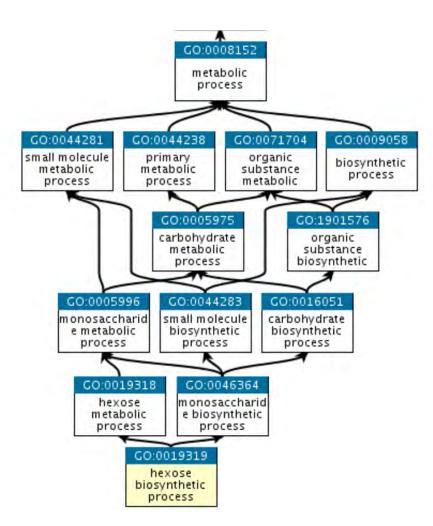


Photo credit: http://geneontology.org/docs/ontology-documentation/

Tang paper ontologies

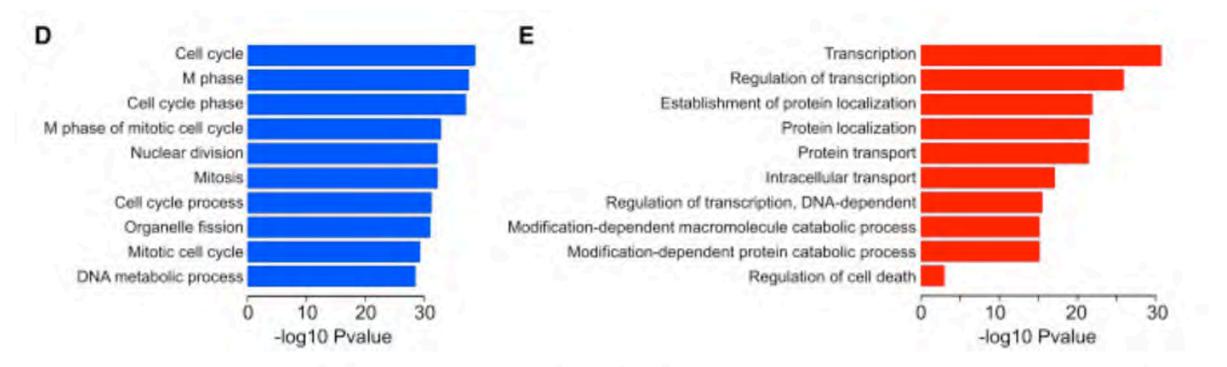


Figure 2 ZIKV-Infected hNPCs Exhibit Increased Cell Death and Dysregulated Cell-Cycle Progression and Gene Expression

Photo credit: https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(16)00106-5

Goal recap

- Understand the rationale of an RNA-Seq experiment and its design
- Understand how we obtain DNA sequence and access its quality
- Use DNA Subway (FastQC/FastX) to QC sequence data
- Use DNA Subway (Kallisto) to (pseudo)align reads
- Use DNA Subway (Sleuth) to explore RNA-Seq results

DNALC Website and Social Media

dnalc.cshl.edu

dnalc.cshl.edu/dnalc-live

