The DNA Learning Center is an operating unit of Cold Spring Harbor Laboratory, extending its traditional research and postgraduate education mission to the college, pre-college, and public levels. Founded in 1988, the DNALC is the world's first science center devoted entirely to genetics education.

The mission of the DNA Learning Center is to prepare students and families to thrive in the gene age. We envision a day when all elementary students are exposed to principles of genetics and disease risk; when all high school students have the opportunity to do hands-on experiments with DNA; and when all families have access to genetic information they need to make informed health care choices.

Front cover: Students in the Science Technology and Research Scholars (STARS) program prep a gel. The STARS program is a two-week research experience designed to support the next generation of minority scientists, doctors, and health professionals.
Executive Director’s Report

Coming Home to Brooklyn

On October 1st, we signed a 30-year, no-cost lease with the City University of New York (CUNY) for an 18,000 square-foot space on the campus of the New York City (NYC) College of Technology (City Tech) in downtown Brooklyn. This was preceded by three years of legal wrangling with city and state authorities that control the property and the complicated public bonds through which it is financed. In this effort we had the unflagging support of City Tech President Russ Hotzler, who used his former experience as vice chancellor and president of several CUNY colleges to guide us through the bureaucratic process. The new facility is designed by Centerbrook Architects and Planners, who have done all architectural work for CSHL over the past 50 years—including the expansion of the DNALC in 2001. With renovations beginning in spring 2020, we expect to bring the facility into operation in time for summer camps in 2021.

Starting a new DNALC location at the “Gateway to Brooklyn” also recalls CSHL’s little-known historical relationship to Brooklyn. The Biological Laboratory at Cold Spring Harbor was, in fact, founded in 1890 as the first operating unit of the newly incorporated Brooklyn Institute of Arts and Sciences—which later grew to include the Brooklyn Museum, Botanical Garden, Children’s Museum, and Conservatory of Music. So, in joining its sister institutions along the axis of Flatbush Avenue, the DNALC will be coming home to Brooklyn.

Finding the City Tech location was the culmination of a 13-year search for a space in which to extend the DNALC’s model for bioscience enrichment to the students of metropolitan New York. Our vision is to provide a place where all NYC students have the same science learning and research opportunities that have been available to elite Long Island students for several decades. The Brooklyn center will build upon our success with Harlem DNA Lab, which has provided lab experiences for 33,000 students since its opening in 2008. The Harlem facility demonstrated that we can readily serve a natural constituency of underrepresented minority (URM) students, who compose about two thirds of public school students in NYC. We tested the feasibility of the Brooklyn location when, in the spring, we opened a temporary lab in the same building on the City Tech campus. This filled quickly, with 1,287 students doing labs in 2019.
The City Tech property fulfills CSHL’s key requirements of educational zoning, high visibility, and ready access. DNALC branding on the building façade will be immediately visible to all traffic coming off the Brooklyn Bridge. Downtown Brooklyn is one of the most accessible areas of New York City, with eight subway lines located within several blocks of City Tech. There will be easy bus drop off on both Tillary and Adams Streets. A dedicated entrance on Tillary Street will provide direct access to the second floor.

The new facility will occupy the entire second floorplate of City Tech’s Pearl Street Building. With six teaching labs and two bioinformatics labs, it will be twice the size of our flagship center in Cold Spring Harbor. The City Tech facility is also more than double the size of the 7,000 square-foot rental space we had originally conceived for NYC. So, scope of the capital project was further magnified by a “gut” renovation of the space, asbestos abatement, entire HVAC upgrade, and replacement of windows and exterior cladding of the entire second floor.

The enlarged space will have increased operating costs—especially staffing. Early on, we also made the commitment to provide free tuition to at least half of students attending academic year field trips and to initiate an ambitious research program for CUNY students. These activities will require additional endowment support. Taking all this into account, we have increased our funding goal from $25 million to $30 million—including about $18 million for construction and $12 million for endowment.

At City Tech, we will continue our proven program of academic-year field trips and summer camps for precollege students. The hands-on lab work will be complemented by minds-on bioinformatics exercises, which will engage students with the coding, computational, and data science skills critical for STEM success.

The City Tech location will also provide a proving ground for our work in undergraduate education. Here the emphasis is on course-based undergraduate research experiences (CUREs). As opposed to the traditional undergraduate research model, which places a small number of
students with individual faculty mentors, CUREs expand research opportunities to all interested students in the context of for-credit courses. When rigorously implemented, especially in the freshman year, CUREs increase retention in STEM majors and on-time graduation by about 20%. Most of the DNALC’s federal funding over the last two decades has been devoted to developing experiment and computer infrastructure to support CUREs. Two teaching labs in the Brooklyn facility will be used exclusively for research by CUNY students, and we hope to quickly establish one of the country’s largest CUREs—serving up to 900 students per year.

The City Tech facility will provide an ideal setting for our CURE work and also as the designated Genomics Hub of InnovATEBIO, the National Biotechnology Education Center. As explained later in this report, this National Science Foundation (NSF) project explicitly supports workforce development and bioscience career pathways in two-year institutions. City Tech is unique among CUNY institutions, in having both two-year and four-year programs on the same campus. City Tech has 17,300 students—of whom 62% of are Black and Hispanic and 67% are the first in their family to attend college—and is officially designated as a Hispanic Serving Institution (HSI). CUNY is the largest urban university system in the U.S. and one of the largest producers of African-American doctoral degrees in the natural sciences and engineering.

The downtown Brooklyn location has strong foot traffic, so we intend to develop a substantial business of “drop-in” visitors on the weekends. We want to make the DNALC a prominent travel destination for people interested in learning what DNA can tell them about their health and their place in the human family. The stories told in the 2,700 square foot exhibit will integrate tightly tailored student experiments and family activities. Our most popular human experiment uses a person’s own DNA type to predict their bitter-tasting ability, a direct analog of pharmacogenetics approach of using a DNA signature to predict a person’s response to a particular drug or chemotherapy.

We popularized the first “personal DNA” experiment 20 years ago. So we envision a day when every DNALC visitor has the opportunity to look at their DNA and compare it to classmates and world populations to show the shared ancestry of all people. This experiment would articulate with a large-scale interactive map that uses personal DNA data to illustrate the prehistoric migration of humans out of Africa that peopled the Old and New Worlds. We will also show the genetic signatures of historic diasporas of ethnic and religious groups, and the spread of innovations—farming, horse culture, and dairying. All of this would be complemented with replicas of ancient ancestors, including those developed by the DNALC—Otzi the Iceman, developed from CT-scan data, and the first articulated Neanderthal skeleton. Visitors could extend their DNA journey with a visit to nearby Ellis Island National Monument, which greeted the ancestors of approximately 40% of Americans alive today. The Tenement Museum and Museum of the City of New York give further depth to the story of how New York became the U.S. melting pot and provide opportunities for detailed exploration of individual ancestry.

Biotechnology in American High Schools

As part of an early grant from the NSF’s Advanced Technological Education (ATE) program, the DNALC conducted a nationwide survey of 4,100 high school biology teachers. This sample took a snapshot of biotechnology/molecular genetics instruction in American high schools in 1998. The survey was designed to compare lab instruction and student exposures to six major techniques of biotechnology/molecular genetics that were measured in the original survey: bacterial transformation, DNA restriction analysis, DNA recombination, plasmid isolation, polymerase chain reaction (PCR), and DNA sequencing. With renewed funding from NSF, we repeated this study in 2018 receiving 2,100 responses from high school biology teachers across the country. Following are the highlights of changes we found in biotechnology instruction over the past two decades.
The number of students exposed to six biotech labs has increased, and teaching these labs has become more mainstream. However, fewer faculty are involved in biotech teaching, and the pace of integrating new labs has slowed.

- The number of faculty offering biotech labs in AP Biology has decreased (62% to 54%), while those offering biotech labs in general biology have increased by a similar margin (21% to 28%).
- Although more faculty offer labs on PCR and DNA sequencing today, it is at half the rate that teachers offered the then-novel methods of transformation and restriction analysis in 1998.

<table>
<thead>
<tr>
<th>1998 (n = 4,100)</th>
<th>2018 (n = 2,100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Teaching</td>
</tr>
<tr>
<td>Transformation</td>
<td>51%</td>
</tr>
<tr>
<td>Restriction analysis</td>
<td>60%</td>
</tr>
<tr>
<td>DNA recombination</td>
<td>32%</td>
</tr>
<tr>
<td>Plasmid isolation</td>
<td>17%</td>
</tr>
<tr>
<td>PCR</td>
<td>12%</td>
</tr>
<tr>
<td>DNA sequencing</td>
<td>16%</td>
</tr>
<tr>
<td>Total Exposures</td>
<td>16%</td>
</tr>
</tbody>
</table>

Biotech funding and electives have doubled since 1998. However, few schools with biotech electives were aligned with the school-to-work movement as advocated by the NSF ATE program, and advanced teaching is concentrated in wealthier districts.

- Adjusted for inflation, per-teacher funding for biotech has increased from $8,236 to $16,651.
- Schools offering lab-based biotech electives increased from 16% to 35%.
- Although 35% of faculty at schools with biotech electives used curriculum materials provided by industry, only 11% used ATE materials and only 22% of these schools had articulation agreements with colleges.
- 68% of schools with biotech electives in 2018 were located in zip codes above the U.S. median household income.

Although 2018 faculty are more academically prepared, they are less involved with professional societies and extracurricular activities.

- 80% of 2018 teachers had graduate degrees compared to 74% in 1998.
- Significantly fewer 2018 teachers belonged to major professional societies, including NABT, NSTA, and state science teachers' associations.
- Significantly fewer 2018 teachers participated in all types of extracurricular activities with their students.
- Significantly more 2018 teachers said they did no out-of-class science activities at all.

<table>
<thead>
<tr>
<th>1998</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>After-school student research</td>
<td>26%</td>
</tr>
<tr>
<td>Science fairs/competitions</td>
<td>36%</td>
</tr>
<tr>
<td>Science field trips</td>
<td>53%</td>
</tr>
<tr>
<td>Joint activities with scientists from local universities/institutes</td>
<td>24%</td>
</tr>
<tr>
<td>None of the above</td>
<td>27%</td>
</tr>
</tbody>
</table>
Consistently over the last 20 years, teachers said they valued summer workshops of 5+ days and workshops at professional meetings as the important contributors to innovation in the classroom. However, whereas 65% of 1998 teachers had attended one or more professional meetings in the past year, 60% of 2018 teachers had attended none. Furthermore, 39% of 2018 faculty thought there were fewer opportunities for training at workshops and summer institutes than in the past, compared to 27% who thought there were more. This suggested a disturbing trend of today’s biology teachers having less access to the very types of training that can keep them involved and up-to-date. This jived with our own observations and those of others who have done grant-funded training over the last several decades.

Traditionally, the NSF has been the major provider of focused, high-quality training for precollege biology teachers. So, we examined 7,454 entries in database of education grants made by the NSF, going back to 1982 when the database appears to have been started. Of these, we determined that 948 offered training opportunities of interest to middle and high school biology educators, and we plotted a graph of the years in which they were active. NSF teacher training opportunities peaked in 1994, when 263 training programs were operational. From that point, NSF training dropped precipitously, falling to 170 in 1998 and reaching its nadir in 2012, when there were 53 programs. The number of new programs had recovered somewhat, to 66 by 2018. Our database analysis confirmed the subjective feeling among 2018 teachers that there were fewer training opportunities available to them. In fact, 2018 had only 38% of the NSF training opportunities as did the 1998 cohort and only 25% as many as teachers in 1994. This amounts to an abdication of a core principle of the NSF Authorization Act of 1973, which made NSF explicitly responsible for “science education at all levels.” It is reason for alarm, at a time when biology is progressing so quickly and pandemic isolation is rendering lab instruction nearly impossible. It is a perfect storm to rip apart the hands-on biology instruction that is the bastion of American science learning.

NSF CyVerse Study of Bioinformatics Education

CyVerse is an NSF-funded cyberinfrastructure for life sciences. The project merges high performance computing, data storage, and people to solve complex biological problems. DNALC training offered through CyVerse focuses on the “people” component of cyberinfrastructure, equipping educators with bioinformatics and data science teaching skills. As part of the Network for Integrating Bioinformatics into Life Science Education (NIBLSE), we led research on barriers educators face in teaching bioinformatics. In the largest nationwide study on the topic to date*, more than 1,200 undergraduate biology faculty revealed that they struggle with teaching bioinformatics primarily due to their own lack of training. Underrepresented minority (URM) faculty and faculty at two-year and minority-serving institutions reported increased barriers compared to their peers. Surprisingly, although recent graduates had better training in bioinformatics, they were less likely to teach this topic than senior faculty. Taken together, the findings highlight the need for more professional...

development and better support for biology faculty as they teach computational topics. Our study also pointed up the need to level the intellectual playing field for URMs. In response to our own studies, we have refocused CyVerse training efforts on longer-duration workshops, including a new, week-long Foundational Open Science Skills (FOSS) course that helps faculty integrate bioinformatics and computational tools into their classroom teaching. We are also redoubling our effort to include URM faculty and to site training at URM-serving institutions.

DNA Barcoding and Metabarcoding

The DNALC continued its concerted efforts to enable high school and college students to conduct authentic biodiversity research using DNA barcoding. Three programs support high school students. *Barcode Long Island (BLI)*, funded by the National Institutes of Health (NIH), involves students in “campaigns” to compare biodiversity across Long Island. The *Urban Barcode Project (UBP)*, funded by the Thompson Family Foundation, and *Urban Barcode Research Program (UBRP)*, funded by matching grants from the Pinkerton Foundation and Simons Science Sandbox, involve students in independent research of biodiversity in NYC. Science teachers are mentors for BLI and UBP students, while scientists from NYC institutions mentor UBRP students. A new collaboration with Hudson River Park, funded by the Lounsbery Foundation, piloted student and citizen science involvement in metabarcoding of fish. Major funding from the NSF Improving Undergraduate STEM Education (IUSE) and ATE programs support the development and dissemination of CUREs for undergraduate students.

Over the year, we improved the biochemical and online resources that support all of these programs, and are making barcoding and metabarcoding accessible to students worldwide. A new, rapid DNA isolation kit makes DNA barcoding more achievable in short classes. A similar fast procedure for microbial and vertebrate metabarcoding also shows promise. After several rounds of testing, we redesigned our sample indexing strategy for metabarcoding—improving sequence quality and taxonomic resolving power, while maintaining the low costs we achieved in previous years. We also developed indexed primers to support invertebrate metabarcoding, expanding the repertoire of research questions we can support.

Improvements to the DNA Barcoding 101 website (https://www.dnabarcoding101.org) included support materials for the new isolation method, new PCR primer information, updated DNA staining and sequencing instructions, a table of protocol choices, and guides for taxonomic identification and sample documentation. The Sample Database evolved as a simple means to enter, store, and access all information related to each student sample and barcode sequence. The website now allows users to create independent programs, allowing faculty and independent groups to manage their own DNA barcoding projects.

DNA Subway, the bioinformatics gateway developed by the DNALC as part of CyVerse, supports our biodiversity programs and is a popular tool for educators at all levels. In 2019, DNA Subway had 36,322 registered users, 63,410 visits (~4% decrease from 2018), and 1.22 million page views (~3% decrease from 2017). Students created 43,492 projects (~10% increase from 2018) across the five Subway lines. The Blue Line supports DNA barcoding sequence analysis, while the Purple Line is a custom and approachable interface to the metabarcoding analysis package QIIME2. This year, the Purple Line was updated to improve the speed and quality of analyses, and support for invertebrate sequence analysis was added. Crucially, we solved an analysis bottleneck that thwarted new users—we created a self-contained “wizard” that seamlessly manages and creates metadata files. Design updates gave the Purple Line a cleaner look, mirroring changes to the rest of the site.

“Upstream” of DNA Subway, a new laboratory information management system (LIMS) allows faculty to assign indexes to different groups and manage next generation sequencing (NGS) libraries. Anticipating a nationwide sequencing service for student metabarcoding projects,
this tool can manage hundreds of samples submitted by dozens of users—and separate (deconvolute) the millions of sequence reads generated in a single NGS run.

High School DNA Barcoding Research Programs

The 2019 BLI program included 208 students working in 79 teams and representing 25 high schools from Suffolk, Nassau, and Queens Counties. Twelve percent of participants were African American, Latino, or Native American. During the year, 73 students attended seven open lab sessions held at the Dolan DNALC, DNALC West, Stony Brook University (SBU), or Brookhaven National Laboratory (BNL), while 114 students used borrowed equipment kits. Nine teams (22 students) used high-throughput sequencing to perform metabarcoding to study marine fish, microbiomes from water, or invertebrates. Over 800 samples were processed, resulting in over 1,200 sequencing reads and 1.2 million NGS reads. We published 239 sequences in GenBank, including two new barcode sequences and 40 with sequence polymorphisms.

Sixty-eight DNA barcoding and metabarcoding projects were presented at the annual BLI research symposium on June 4th at CSHL. These included biodiversity studies of plants, invertebrates, fungi, algae, and lichens; microbiome studies of water, excrement, and invertebrates; and eDNA studies of fish. Dr. Semir Beyaz, CSHL Fellow and Donaldson Translational Fellow at CSHL, gave the keynote address on the interplay between diet and microbiome in cancer risk. BLI students received awards at numerous competitions, including the Long Island Science and Engineering Fair (LISEF) and NYC Science and Engineering Fair (NYCSEF). One group received the Brooklyn Friends of Clearwater Award for increasing awareness of the environment. Three teams from William Floyd High School were invited by their county legislator to present their research on effects of heavy metals on aquatic biodiversity.

The 2019 UBP and UBRP programs had 161 students working in 61 teams and representing 23 NYC high schools. UBP and UBRP students made ample use of DNALC resources: 62 students attended open lab sessions at Harlem DNA Lab or DNALC at City Tech, while 49 students borrowed equipment. Teams collected and processed over 1,100 samples for DNA sequencing, resulting in over 1,150 single sequences and 6.2 million NGS reads. The annual research symposium on May 30th at the New York Academy of Medicine showcased 61 projects and included a keynote speech by Dr. Claudia Wultsch of Hunter College and AMNH on the microbiomes of wild carnivores. One UBRP team was recognized with an outstanding poster award at the event, for a project that examined the microbiomes from the noses of e-cigarette users and non-users. The winner for UBP showed, that earthworm diversity is higher in private—compared to public—locations in Greenpoint, Brooklyn. One UBP team submitted a manuscript to the *Journal of Emerging Investigators* on using DNA barcoding to identify plant species and create a phenology trail in Central Park.
This year, 118 students across all three barcoding programs (BLI, UBP, and UBRP) completed surveys as a part of our ongoing effort to monitor the impact of participation in science research. Participants were asked about their experiences in the programs, how much they had learned, and how they felt about science. The students were overwhelmingly proud of the research they had done (86.4%) and felt that problem-solving approaches learned during their research would be helpful in future science courses (80.9%) and careers (77.3%). Nearly three-quarters (71.3%) said they were more interested in continuing science study and, specifically, biology (74.1%). Overall, our results suggest that DNA barcoding demystifies the process of science research and encourages students to continue on STEM pathways.

Studying Biodiversity in the Hudson River

A new grant from the Richard Lounsbery Foundation supported a collaboration with the Hudson River Park (HRPK) to systematic sample water from the Hudson River. Using eDNA to identify the creatures living in the water provides a window into the life of this wild space adjacent to the nation’s busiest metropolis. Beginning in January, HRPK staff and high school students collected over 200 water samples. HRPK staff were trained in eDNA processing and supported as students participating in INCLUDES, an intensive summer research program, extracted and amplified DNA for sequencing. Over 250 citizen scientists participating in HRPK summer programs collected and filtered additional water samples. Meanwhile, we led 500 visitors as they isolated DNA from organisms collected in the park during HRPK’s 6th annual Submerge Marine Science Festival.

Initial results were promising, with many of the fish expected in the river appearing in the eDNA results. Highlights included identifying dolphin, endangered sturgeon, and shiner DNA. A valuable, but less exciting finding is that Hudson River vertebrate DNA is dominated by human and human-associated DNA—from our pets and food. This made it harder to find the fish DNA we were looking for.

A separate small collaboration with the Billion Oyster Project (BOP) aims to help teachers work with their students to collect and identify organisms that populate oyster cages. A Billion Oyster Project teacher joined Urban Barcode Project training during the summer to learn how to lead teams in preparation for work at BOP sites. Conversely, we presented DNA barcoding at the BOP Annual Science Fair, letting participants know about this new opportunity.

Barcoding in Undergraduate Classes

We continued to develop, disseminate, and assess DNA barcoding and metabarcoding as “formatted” solutions for CUREs through our $2 million IUSE collaboration with James Madison
University (JMU), CUNY City Tech, Bowie State University (BSU), and Austin Community College (ACC). JMU has adapted the DNALC’s barcoding curriculum to support a model CURE. Remarkably, this CURE reaches over 1,700 students per year. Pushing DNA barcoding into introductory classes with many underrepresented minorities, our collaborators at City Tech and BSU implemented DNA barcoding with 24 and 22 freshman students, respectively.

During the summer, JMU hosted a 5-day “DNA Barcoding for CUREs” workshop. Twenty-two undergraduate educators (18% underrepresented minority; 77% female, 23% male) representing seven two-year public, six four-year public, and five four-year private undergraduate institutions participated in the workshop designed to prepare them to successfully implement DNA barcoding CUREs. Participants learned by doing, carrying out a biodiversity study of JMU forest habitat; presentations by collaborators on the science and CURE implementations highlighted potential challenges and solutions. In a remarkably fast turn-around, nine workshop participants implemented DNA barcoding CUREs during the fall semester—reaching 242 students, including 24% underrepresented minorities. These students reported similar or better learning and attitudinal effects as students taught by project co-PIs, suggesting that the week-long training format is sufficient to launch an effective DNA barcoding CURE.

In preparation for training in 2020, the DNALC’s metabarcoding pipeline was adapted and integrated into an upper-level genomics course at JMU. In this course, 14 junior and senior undergraduates and two graduate students showed that male and female snakes of the same species have different microbiomes. While developing course materials, a JMU student co-authored a manuscript outlining an introduction to command line analysis of NGS data, which is currently in review with the peer reviewed journal CourseSource. BSU also piloted metabarcoding with 30 students in an upper level molecular biology class, comparing the microbial diversity in different aquatic environments on campus.

New National Center for Biotechnology Education

In October, the DNALC became a lead institution in the InnovATEBIO National Biotechnology Education Center. The center is funded through NSF ATE, which seeks to keep America’s workforce competitive. Although the ATE program focuses almost exclusively on two-year colleges, this is the fourth grant that the DNALC has received. Previous grants supported development and dissemination of experiments that illustrate key methods in biotechnology, as well as our survey of high school biotechnology education. Our long-time collaborator Linnea Fletcher, at Austin Community College, leads the project team. Our role is to develop a New York City Genomics Hub to support genome-based experiments in two-year colleges. The ATE hub will be based at the new DNALC at City Tech, in Brooklyn.
As part of this national center, we will develop a supply chain model that will dramatically reduce DNA sequencing costs and allow an unprecedented number of students to participate in authentic research. The genomics supply chain will entail lab, quality assurance, data science, and “soft” skills that will prepare students for successful careers in biotechnology. In this model, students at community colleges will learn key technical skills as they produce the products and services to support classroom experiments. Biotech students will learn while producing the reagents needed to isolate DNA, amplify the barcode region, and prepare it for sequencing. Students will not only produce reagents for their own programs, but also distribute kits for students in other community colleges and high schools. Advanced students will also assist their peers as “clients,” supporting them as they learn biochemistry and bioinformatics.

A crucial element of the system will be a student-staffed sequencing service, giving students real-world experience in the world of biological big data. Using approaches developed at the DNALC, the sequencing service will coordinate sequence submissions from classes around the country and stage them for cost-effective sequencing on machines run by students in community college biotechnology programs.

NSF MaizeCODE

MaizeCODE continued developing data that will become an important resource for breeders and plant scientists. Our pilot study showed how to use MAKER-P quality scores and the alignments between a translated protein sequence and its homologs across species to identify errors in gene predictions*. Student curators then corrected the flagged gene models using the Apollo annotation editor, and uploaded their corrections as a track on the Gramene genome browser.

As part of our outreach efforts on this project, the second and third Maize Annotation Jamborees were held January 10–11 at the Scripps Institution of Oceanography in San Diego, CA and March 13–14 at the Biology Department of Washington University in St. Louis, Missouri. We trained PUI faculty and researchers to use our genome annotation pipeline, with the objectives of integrating maize annotation CUREs and establishing a larger community curation effort to improve the *Zea mays* gene models. These efforts will continue via periodic meetings to discuss progress on the partnerships and providing assistance in developing bioinformatics lessons and wet lab resources that can be implemented in the classroom.

We presented the results of our annotation project at the XXVII Plant and Animal Genome Meeting in San Diego, CA (January), at the 61st Maize Genetics Conference in St. Louis, MO (March), at Middle Tennessee State University, Murfreesboro, TN (November), and the 11th CSHL Plant Genomes System Biology and Engineering Meeting in Cold Spring Harbor, NY (December).

Licensed Centers
We celebrated the official opening of the Regeneron DNA Learning Center in December. Located on Regeneron’s Sleepy Hollow campus, this new 4,700 square foot facility has two teaching labs and a large prep lab with space specifically designed for assembling footlocker kits. The Regeneron DNALC is easily accessible to schools in Westchester, Rockland, and Putnam counties, as well as New Jersey and Connecticut. In our first month of operation in 2019, over 100 high school students visited for field trips, and reservations for an additional 1,500 students were made for spring 2020.

In 2019, 1,691 students from 42 different schools participated in hands-on molecular biology labs supported by the DNALC at Notre Dame (DNALC-ND). Under the leadership of director Dr. Amy Stark, instructional programs included lab field trips to the DNALC-ND, in-school instruction, and engagement at regional and state-level science fairs. Over 112 students, including two from Canada, participated in week-long residential and day camps.

International Partnerships
DNALC Asia, Suzhou, China
As part of our collaboration with DNALC Asia in Suzhou Industrial Park (SIP), we organized and interviewed candidates for a new Education Director after the departure of Jessica Talamas. Finding the right person for this position was key, because we wanted an educator versed in the American style of instruction and prepared for the differences of life in China. We were very fortunate to recruit Dr. John Olson, a New York native who was already working a lecturer at Peking University. After training here at the DNALC, John started in Suzhou in August and worked to set up barcoding research projects at international schools and local universities.

DNALC Asia continued to ramp up its instructional capacity. In September and October, the Center saw 1,584 student visitors for on-site labs (vs. 307 in 2018) and taught 1,072 in local high schools (vs. 375 in 2018). The DNALC Asia “Young Biologist” program selects talented students in the life sciences and helps them develop skills in experimental biology. After six months of training, students independently complete a scientific poster, present their material to the public, then meet face-to-face with expert judges. The 2018-2019 program began in December of 2018 with 70 students and after two rounds of selection, 20 students were selected to participate in the final presentations in April.

The 2019-20 program began with 80 students in December. Training for SIP teachers brought in 30 high school and 26 middle school faculty who were trained to bring courses into the classroom. Overall, DNALC Asia offered individual courses with a total enrollment of 4,655 students in 2019.
Beijing 166, China

Aiming to improve biology education at secondary schools in China, the DNALC established a licensed center at Beijing 166 in 2014. Under the collaboration contract, Beijing students and teachers come to New York to attend two- or three-week camps during the summer and winter; additionally, DNALC instructors conduct workshops in Beijing for a total of four weeks in the spring and fall each year. In 2019, 299 BJ 166 students and 20 teachers attended DNALC camps and workshops. In April 2019, DNALC executive director Dave Micklos and international collaboration manager Catherine Zhang traveled with 112 Beijing students to biodiversity hot spots in southern China to collect samples for DNA barcoding research. Despite rainy weather, the students collected and developed DNA barcodes from 244 samples; 57 DNA sequences have been published in GenBank.

The experiments in hands-on biology education and student research the DNALC has conducted at Beijing 166 are being noticed by innovative educators, especially at the international and foreign language schools in China. In December 2019, Dave was invited to visit schools at Shenzhen, Dongguan, and Suzhou, giving talks to a total of 750 educators, parents, and students. Two leading international schools—Tsinglan School and Shen Wai International School—intend to become DNALC partner schools in the near future.

DNA Learning Center Nigeria

On Wednesday November 20th, a formal license to operate and host the DNA Learning Center Nigeria was awarded to Godfrey Okoye University (GOU) in Enugu state, Nigeria. This is the result of a multiyear collaboration between the DNALC and GOU, facilitated through our close collaborator, Dr. George Ude of Bowie State University. DNALC Scholar and NYU graduate Michael Okoro leads the project and oversaw the refurbishment of the new center. GOU Vice Chancellor Christian Anieke provided a dedicated building for the DNALC on the new GOU Ugwuomu campus. The DNALC provided the lab design and $50,000 for equipment, including its signature lab table, as well continued salary support for Michael. Over the next year, the center will begin to offer programs that benefit students and teachers at GOU and colleges throughout Nigeria.

Dissemination at Professional Meetings

As in previous years, we continued to disseminate our programs at meetings. We presented our Ötzi the Iceman activity and results from our Biotechnology in American High Schools research at NABT. DNALC staff presented DNA barcoding and metabarcoding at the Invertebrates in Education and Conservation Conference, International Plant and Animal Genome Conference (PAG), American Society for Microbiology Conference, Long Island Natural History Conference, Community College Undergraduate Experience Summit, NIH SEPA SciEd Conference, and NSF IUSE PI Conference. Our data science programs were also presented at PAG and BioCódigo de Barras Symposium, while our efforts to democratize science and science education were presented at the ISMB/ECCB Conference.
Lab Instruction and Outreach

In 2019, 20,358 students attended lab field trips at our five facilities: Dolan DNA Learning Center, DNALC West, Harlem DNA Lab, Regeneron DNALC, and DNALC NYC at City Tech. In-school instruction programs reached 7,728 students and 1,157 students attended weeklong camps, including some three international campers from Mexico and Spain. Footlocker kits were used by 1,758 students, 262 of whom were conducting independent research through UBP, UBRP, or BLI.

A grant from National Grid Foundation paid tuition for field trips and in-school instruction for 693 students from the Central Islip UFSD. An additional 1,105 students from other public school districts received scholarships—including Amityville, Brentwood, Malverne, Roosevelt, Uniondale, Connetquot, William Floyd, Ossining, and Valley Stream.

This year 2,667 (58%) of the students that attended field trips at Harlem DNA Lab and DNALC at City Tech, came from Title I schools that qualified for tuition assistance. The William Townsend Porter Foundation subsidized 20% of student scholarships for students visiting the Harlem DNA Lab. An additional 14 students from IS 59 in Queens received sequential lab instruction at DNALC West as part of an ongoing collaboration with Northwell Health.

The Partner Member Program continued to provide custom science sequences and advanced electives for seven independent schools in the tri-state region.

• Research teams from our newest member, Fontbonne Hall Academy, used DNA barcoding to create novel GenBank entries for flowering plants.
• Grace Church School offered a summer program that included using DNA barcoding to survey biodiversity of the plants and insects found near the school.
• At Marymount School of New York, genetics programs were incorporated as key parts of the biology curriculum, and students in molecular biology continued projects to analyze environmental DNA (eDNA) from NYC Parks and the Hudson River.
• Research teams from Sacred Heart Greenwich used DNA barcoding to identify shellfish in food products and confirm identity of sushi products. One team used next generation sequencing to analyze the effect of different ceramic surfaces on the microbiome.
• Lycée Français de New York continued to refine the 8th grade forensics elective and offered Human Genomics and Green Genes camps during the summer.
• The Chapin School implemented genetics programs at several grade levels, including the advanced Molecular Genetics elective.
• St. David’s School integrated basic genetics and DNA barcoding programs with existing curricula in grades five and eight.

As part of ongoing local partnerships, eight students from St. Dominic High School received daily instruction by DNALC educators. Students enrolled in the Molecular and Genomic Biology Research course visited the DNALC each afternoon for customized lab experiences in DNA barcoding as well as DNA and Genome Science. DNALC educators also worked with 22 students from Cold Spring Harbor High School’s 9th grade research program to do a survey of the biodiversity of Cold Spring Harbor using DNA barcoding. All students in both classes participated in the Barcode Long Island research program.
This year we had 5,041 visitors to the Ötzi the Iceman exhibit, either on its own or as part of a field trip. With the success of the Ötzi exhibit, we focused attention this year to completing the redesign of our additional exhibit space. Nine Saturday DNA! sessions drew 277 participants who learned about DNA isolation, crime scene analysis, genetically modified foods and gel electrophoresis, ancient humanity, the science of the five senses, genetic engineering, and Mendelian inheritance. A microbial masterpiece created at our fall Agar Art session won 1st place in the American Society for Microbiology (ASM) Agar Art Kids contest. In this workshop, participants learned how laboratory techniques that scientists commonly use to study the living world could also be used to create unique works of art. In addition, DNALC staff presented as part of the SUBMERGE Science Festival at Hudson River Park, Student Conference on Conservation Science at the American Museum of Natural History, Bronx Center for Science and Mathematics Career Fair, STEM Teachers NYC Expo, Pine Barrens Discovery Day at Wertheim National Wildlife Refuge, and Saturday Science for Students at the Explorer’s Club in Manhattan.

We continued to work with recipients of the Junior Breakthrough Challenge, an international competition where young people submit short videos explaining big scientific ideas. Winners receive scholarships and a new lab for their school that is designed and equipped with help from the DNALC. This year we began work with the school of 2018 winner Samay Godika, the National Public School-Koramangala in Bangalore, India. The school building was already being refurbished, so a perfect time to plan a new lab space! We have provided some designs and will begin working with faculty to purchase equipment.

As part of our ongoing partnership with CSHL Women in Science and Engineering (WiSE), we hosted the third WiSE Fun with DNA summer camp. Held on the main campus of CSHL in Delbrück Laboratory, 21 young female science enthusiasts, two of whom received WiSE scholarships to attend, had the opportunity to meet and interact with enthusiastic female role models pursuing careers in the sciences. Each afternoon, the girls participated in WiSE activities on herd immunity, neuroscience, and astrophysics. They also took a “field trip” to Uplands Farm to tour the greenhouses and learn about the rich history of plant research at CSHL.

The DNALC has long been interested in reaching diverse audiences and communities and has made progress through scholarships and our locations in Harlem and Brooklyn. This year, we created a summer camp exclusively to reach URM students underrepresented in the sciences. The Science Technology AND Research Scholars (STARS) program is a two-week research...
experience designed to support the next generation of minority scientists, doctors, and health professionals. STARS provides students with state-of-the-art laboratory and computer science skills needed to succeed in STEM in college and beyond. Led by DNALC Assistant Director Jason Williams and Middle School Educator Brittany Johnson, this program also involved collaboration with Dr. Carol Carter, a professor at Stony Brook University, Dr. Paul Lichtman, a research coordinator at Adelphi University, and David Johnson, a student from the CSHL graduate school. Together, this team designed a curriculum that exposed students to DNALC lab activities, guest lectures from CSHL graduate students and researchers, a tour of the Stony Brook University campus and medical school, and guidance on research opportunities.

The camp attracted 24 students from 15 school districts; 80% had not previously attended DNALC programs. After a Saturday orientation for the students and their families, the first week focused on lab work, and the second week focused on bioinformatics and computer coding. The experience concluded with students presenting their work to their families—with the goal of sharpening their science communication skills and educating their families on STEM careers. Several participants have gone on to pursue independent high school research projects. We hope that this program will become a key element of CSHL’s growing commitment to generate a “pipeline” of minority students in STEM higher education and careers.

Our collaboration with the CSHL School of Biological Sciences continued with exposing graduate students to skills needed to communicate science to a variety of audiences. As part of their required curriculum, first year graduate students work with DNALC instructors to complete 12 half-day sessions in which they progress from classroom observation to lesson planning to co-instructing alongside a DNALC staff member to independent leading lab classes. Students learn classroom management skills—including how to quickly assess an audience and customize a presentation accordingly. Graduate students interact equally with both middle- and high-school-aged students during their required rotations, then complete three elective classes in which they implement their new skills.

BioMedia Visitation and Projects

In 2019, 5.2 million visitors accessed our suite of multimedia resources. Google Analytics counted 3.7 million visits to DNALC websites, our YouTube videos received 883,944 views, and the 3D Brain, Weed to Wonder, and Gene Screen smartphone/tablet apps were downloaded 590,471 times. In-app purchases of 3D Brain netted $6,175 for the year.

We completed a total redesign the DNALC.org site, giving it a fresh look, better organization, and easier navigation. We worked with the Public Affairs Department to prepare for a seamless merger with the Cold Spring Harbor Laboratory (www.cshl.edu) website by transitioning the DNALC site domain to https://dnalc.cshl.edu.

The BioMedia Group continued to support the educational objectives of the DNALC through web design and programming, print design, photography, videography, and lab classroom layout planning for collaborators around the world. We followed up on earlier development of Our Human Inheritance, a museum exhibit that features Ötzi the Iceman and ancient human ancestors in the main gallery space. Working on content and design with DNALC educators, the BioMedia staff completed displays for the rear gallery in December. Similar to the large mural of the Italian Alps in the Ötzi exhibit, the focal point of the new display is a stunning floor-to-ceiling, 30-foot long image of the universe that serves as a backdrop for a timeline of the history of life on Earth and some of the key developments that have allowed life to flourish on our planet. In an exploration of the processes and outcomes of evolution, the exhibit showcases the evolution of the eye—from a simple light detecting eyespot to the compound eye. Additionally, several interesting human evolution stories connect the new space to the existing exhibits on human ancestry. A touchscreen with an interactive chromosome map
enables students to explore the human genome one gene at a time. Finally, an interactive human variation wall highlights how traits manifest themselves in different people—holding a literal mirror up to our visitors and allowing them to explore some of their own traits.

Staff and Interns

During the year, the DNALC staff was strengthened by the addition of Brittany Johnson, Justin Burke, Jennifer Hackett, Ph.D., Louise Bodt, Lina Bader, and Lina Ruiz-Grajales to the education and instruction staff, and Daniel Jacobs to the BioMedia Group.

Brittany Johnson started in January as a middle school educator. A native of Long Island, Brittany remembers visiting the DNALC as a child and being captivated by the “Mystery of Anastasia. She received a B.A. in biology from Fisk University and a Master of Biological Medical Sciences from Mississippi College. While volunteering in the Central Islip School, Brittany met a DNALC educator who had come to provide an in-school lab. Brittany pitched in with the class, impressed us, and was offered the next vacant position.

Justin Burke joined the DNALC in February as our lab technician. He is responsible for testing, assembling, and organizing supplies and reagents for all DNALC instruction, as well as managing our high school and college intern programs. Justin is a native Long Islander and has been interested in science his whole life. His work at the DNALC is preparing him to return to his studies of biochemistry and cell biology at Stony Brook University.

In June Daniel Jacobs joined our BioMedia Group as a programmer charged with maintaining, designing, and updating bioinformatics tools for our popular DNA Subway website. Daniel’s interest in coding began in high school. He initially studied physics at Adelphi University then transferred to Queens College and earned his computer science degree. While there, he became “multilingual” in programming languages and learned Python to help with research on factors affecting the sustainability of world peace.

Jennifer Hackett joined our NYC education team in July. Jenny attended DePauw University where she developed her passion for science through research in the Science Research Fellows Program, including as part of the team that discovered the gene for frontotemporal dementia. She completed her Ph.D. thesis at Johns Hopkins University School of Medicine, where she studied the role of telomere dysfunction with Nobel laureate and former CSHL researcher Carol Greider. While developing shRNA libraries for genome-wide screens as a postdoc at Harvard Medical School, she volunteered with programs for children through Boston Cares. This motivated her to join the NYC Teaching Fellows and teach ultimately teach science at the prestigious Dalton School in Manhattan. She also consulted on the creation of BSCS/NIH curriculum supplements and is the author of Molecular Biology: Concepts for Inquiry, a high school textbook and curriculum.

Louise Bodt started in August as an educator and UBP manager based out of our City Tech temporary lab. A Brooklyn native, Louise participated in science classes and internships at the American Museum of Natural History (AMNH) during high school, which sparked her interest in genetics. She earned a B.A. from Smith College where she studied molecular biology and worked in a parasitology lab. After three years teaching science at two NYC private schools, she taught at the AMNH while receiving her M.S. in Biology from NYU, where she focused on the population genetics of European starlings.

Lina Bader joined the DNALC as an instructor for Regeneron DNALC. After a Bachelor’s degree in biology from the University of Pennsylvania and graduate program for education, Lina taught biology at a Philadelphia public school. Although she loved classroom teaching, she was limited in her desire to implement lab teaching in molecular genetics. Being familiar with DNALC resources, Lina jumped at the opportunity to join the DNALC team.
Lina Ruiz-Grajales joined the DNALC in November as an instructor for Regeneron DNALC. After four years as a pharmaceutical chemistry student at the University of Antioquia in Colombia, she moved to New York and enrolled at Purchase College, where she studied the effects of climate on the model plant, Arabidopsis thaliana. As an Amgen summer scholar at UC Berkeley, she explored the role of the plant microbiomes in protection against plant pathogens. Her strong research background and knowledge of metabarcoding made her a natural to help with our student research programs using DNA barcodes.

We said goodbye to three staff members in 2019: genetics educators Alison Cucco and Pauline McGlone and Urban Barcode Project manager Christine Marizzi.

After eight fruitful years at the DNALC, Christine Marizzi accepted a position in September as a lead community scientist at BioBus. Christine started as manager of DNALC West, but quickly took on management of our two barcoding projects in New York City: UBP and UBRP. Christine did it all, from recruiting student researchers and faculty mentors to organizing the annual symposia for 500+ participants. She brought her strong love of citizen science to the DNALC, initiating our collaboration with Genspace and organizing a monumental “agar art” map of Manhattan that garnered worldwide attention.

In the spring Pauline McGlone earned a Master’s degree in healthcare administration from Hofstra University and accepted a position as a project associate at NYU Langone. Pauline started her journey at the DNALC as a high school intern in 2012. While attending college locally, Pauline continued to work as a college intern. She embraced this learning experience, which helped her with college biology courses and required labs. After interning for five years, Pauline came full circle—transitioning to a middle school educator who taught the labs she had prepped as an intern.
Alison Cucco left the DNALC in the spring to become environmental compliance coordinator for PSE&G. Alison was an educator for the Harlem DNA Lab and Partner Member schools. She provided customized in-school instruction, and assisted with student barcoding projects, including a pilot program using environmental DNA to monitor the health of the Hudson River Estuary.

Since the DNALC opened, we have relied on high school and college interns to support our day-to-day operations. An internship offers students the unique opportunity to gain real laboratory or design experience in an educational environment. We gathered an amazing group of interns this year, and said farewell as others left for college:

High School Interns

Jacqueline Albert, Syosset High School Sarah Nace, Walt Whitman High School
Christopher Catalano, Garden City High School Jack O'Hara, St. Anthony's High School
Christopher Cizmeciyan, Syosset High School Julia Padro, Grace Church School
Kaela Deriggi, St. Anthony's High School Aveline Roderick, St. Anthony's High School
Thomas Kamara, All Hallows High School Mina Samaras, Plainedge High School
Brady Lyons, St. Dominic High School Samantha Sgrizzi, Huntington High School
Ethan McGuinness, Huntington High School Esha Sharma, Syosset High School
James McKechnie, Northport High School Michael Stabile, Plainedge High School
Ava Maiella, Harborfields High School Nicholas Stabile, Plainedge High School
Sonja Michaluk, Hopewell Valley Central High School Alejandro Wiltshire, St. Mary's High School

High School Interns Departing for College

Yusiry Acevedo Nunez, Farmingdale State College Randy Diaz Arias, University of Rochester
Gavin Calabretta, Cornell University Sibelle O'Donnell, University of Southern California
Elijah Calle, University of Buffalo

College Interns

Nadia Alomari, New York City College of Technology Jillian Maturo, Boston College
Gabrielle Blazich, Fordham University William McBrien, Stony Brook University
Taehwan Cha, New York University Katherine Parra, New York City College of Technology
Megan Erhardt, University of New Haven
Omotayo Ikomenisan, Hunter College Joni Sebastiano, Stony Brook University
Isabella Martino, Stony Brook University Jon Triscari, University of Rochester

David Micklos
DNA Learning Center Executive Director
2019 Grants

<table>
<thead>
<tr>
<th>Grantor</th>
<th>Program</th>
<th>Duration of Grant</th>
<th>2019 Funding†</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEDERAL GRANTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Institutes of Health</td>
<td>Barcode Long Island</td>
<td>7/14–3/21</td>
<td>135,178</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>Biotechnology in American High Schools: Continuing Research</td>
<td>9/18–8/19</td>
<td>28,048</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>Implementing DNA Barcoding for Course-Based Undergraduate Research Experiences</td>
<td>10/18–9/23</td>
<td>229,880</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>MaizeCODE: An Initial Analysis of Functional Elements in the Maize Genome</td>
<td>6/16–5/19</td>
<td>160,603</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>CyVerse: Cyberinfrastructure for the Life Sciences</td>
<td>8/18–7/23</td>
<td>187,183</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>The iPlant Collaborative: Cyberinfrastructure for the Life Sciences</td>
<td>9/13–8/19</td>
<td>171,068</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>RCN-UBE: Establishing a Genomics Education Alliance: Steps Towards Sustainability</td>
<td>9/18–8/20</td>
<td>45,107</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>InnovATEBIO National Biotechnology Education Center</td>
<td>10/19–9/24</td>
<td>0</td>
</tr>
<tr>
<td>NON-FEDERAL GRANTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfred P. Sloan Foundation</td>
<td>DNA Center NYC Start-up</td>
<td>6/18–6/21</td>
<td>57,244</td>
</tr>
<tr>
<td>Beijing No. 166 High School</td>
<td>Chinese Collaboration Agreement</td>
<td>7/19–6/22</td>
<td>23,161</td>
</tr>
<tr>
<td>Breakthrough Prize Foundation</td>
<td>Laboratory Design and Teacher Training for Breakthrough Junior Challenge Prize Winners</td>
<td>12/15–12/19</td>
<td>7,625</td>
</tr>
<tr>
<td>Health Park</td>
<td>Health Park Agreement</td>
<td>12/15–12/20</td>
<td>7,491</td>
</tr>
<tr>
<td>National Grid Foundation</td>
<td>Genetics Education Program</td>
<td>7/19–6/20</td>
<td>0</td>
</tr>
<tr>
<td>Pinkerton Foundation</td>
<td>Urban Barcode Research Program</td>
<td>1/19–5/20</td>
<td>93,532</td>
</tr>
<tr>
<td>Richard Lounsbery Foundation</td>
<td>Developing Independent Student Marine Biodiversity Research Using eDNA</td>
<td>10/17–6/20</td>
<td>6,024</td>
</tr>
<tr>
<td>The Simons Foundation</td>
<td>Urban Barcode Research Program</td>
<td>12/17–8/20</td>
<td>104,410</td>
</tr>
<tr>
<td>William Townsend Porter Foundation</td>
<td>Harlem DNA Lab for Underprivileged Students</td>
<td>1/19–1/20</td>
<td>13,500</td>
</tr>
<tr>
<td>Nature’s Bounty Foundation</td>
<td>Vitamin Engineering Lab</td>
<td>8/18–11/19</td>
<td>25,000</td>
</tr>
<tr>
<td>New York Harbor Foundation, Inc.</td>
<td>Billion Oyster Project</td>
<td>3/19–9/19</td>
<td>6,000</td>
</tr>
</tbody>
</table>

† Includes direct and indirect costs.
The following schools and school districts each contributed $1,000 or more for participation in the *Curriculum Study* program:

<table>
<thead>
<tr>
<th>School District</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellmore-Merrick Central High School District</td>
<td>$3,500</td>
</tr>
<tr>
<td>East Meadow Union Free School District</td>
<td>$3,500</td>
</tr>
<tr>
<td>Elwood Union Free School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Fordham Preparatory School</td>
<td>$2,100</td>
</tr>
<tr>
<td>Half Hollow Schools Central School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Harborfields Central School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Herricks Union Free School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Island Trees Union Free School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Jericho Union Free School District</td>
<td>$3,500</td>
</tr>
<tr>
<td>Levittown Union Free School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Locust Valley Central School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Long Beach Union Free School District</td>
<td>$3,150</td>
</tr>
<tr>
<td>Massapequa Union Free School District</td>
<td>$3,150</td>
</tr>
<tr>
<td>North Shore Central School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Oceanside Union Free School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Oyster Bay-East Norwich Central School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Plainview-Old Bethpage Central School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Portledge School</td>
<td>$3,150</td>
</tr>
<tr>
<td>Port Washington Union Free School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Roslyn Union Free School District</td>
<td>$2,100</td>
</tr>
<tr>
<td>Syosset Central School District</td>
<td>$3,500</td>
</tr>
<tr>
<td>Yeshiva University High School for Girls</td>
<td>$2,100</td>
</tr>
</tbody>
</table>

The following schools and school districts each contributed $1,000 or more for participation in the *Genetics as a Model for Whole Learning* program:

<table>
<thead>
<tr>
<th>School District</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldwin Union Free School District</td>
<td>$1,600</td>
</tr>
<tr>
<td>Bayshore Union Free School District</td>
<td>$4,240</td>
</tr>
<tr>
<td>Bellmore Union Free School District</td>
<td>$10,500</td>
</tr>
<tr>
<td>Berkeley Carroll School</td>
<td>$2,500</td>
</tr>
<tr>
<td>Bethpage Union Free School District: Century 21 Program</td>
<td>$1,050</td>
</tr>
<tr>
<td>Bridges Academy</td>
<td>$1,470</td>
</tr>
<tr>
<td>Cambria School of Excellence, Inc.</td>
<td>$1,500</td>
</tr>
<tr>
<td>Center Moriches Union Free School District</td>
<td>$1,400</td>
</tr>
<tr>
<td>Cold Spring Harbor Central School District</td>
<td>$14,437</td>
</tr>
<tr>
<td>Columbia Grammar and Preparatory School</td>
<td>$1,650</td>
</tr>
<tr>
<td>Commack Union Free School District</td>
<td>$1,600</td>
</tr>
<tr>
<td>East Meadow Union Free School District</td>
<td>$1,050</td>
</tr>
<tr>
<td>East Williston Union Free School District</td>
<td>$1,800</td>
</tr>
<tr>
<td>Elwood Union Free School District</td>
<td>$5,550</td>
</tr>
<tr>
<td>Floral Park- Bellerose Union Free School District</td>
<td>$8,650</td>
</tr>
<tr>
<td>Garden City Union Free School District</td>
<td>$21,585</td>
</tr>
<tr>
<td>Great Neck Union Free School District</td>
<td>$22,800</td>
</tr>
<tr>
<td>Green Vale School</td>
<td>$2,300</td>
</tr>
<tr>
<td>Greenwich Country Day School</td>
<td>$4,125</td>
</tr>
<tr>
<td>Hicksville Union Free School District</td>
<td>$1,600</td>
</tr>
<tr>
<td>Hofstra STEP</td>
<td>$1,100</td>
</tr>
<tr>
<td>Huntington Union Free School District</td>
<td>$10,125</td>
</tr>
<tr>
<td>Jericho Union Free School District</td>
<td>$15,158</td>
</tr>
<tr>
<td>Kings Park Union Free School District</td>
<td>$3,500</td>
</tr>
<tr>
<td>Lawrence Union Free School District</td>
<td>$3,200</td>
</tr>
<tr>
<td>Locust Valley Central School District</td>
<td>$3,750</td>
</tr>
<tr>
<td>Long Island School for the Gifted</td>
<td>$1,150</td>
</tr>
<tr>
<td>Merrick Union Free School District</td>
<td>$3,000</td>
</tr>
<tr>
<td>North Bellmore Union Free School District</td>
<td>$5,347</td>
</tr>
<tr>
<td>New York City Department of Education</td>
<td>$12,960</td>
</tr>
<tr>
<td>Oceanside Union Free School District</td>
<td>$2,520</td>
</tr>
<tr>
<td>Our Lady of Lourdes, Malverne</td>
<td>$1,470</td>
</tr>
<tr>
<td>Oyster Bay- East Norwich Central School District</td>
<td>$2,125</td>
</tr>
<tr>
<td>Plainedge Union Free School District</td>
<td>$1,200</td>
</tr>
<tr>
<td>Rockville Centre Union Free School District</td>
<td>$4,125</td>
</tr>
<tr>
<td>Roslyn Union Free School District</td>
<td>$6,300</td>
</tr>
<tr>
<td>Smithtown Union Free School District</td>
<td>$10,275</td>
</tr>
<tr>
<td>South Huntington Union Free School District</td>
<td>$7,600</td>
</tr>
<tr>
<td>St. Agnes Cathedral School</td>
<td>$1,375</td>
</tr>
<tr>
<td>St. Patricks School (Huntington)</td>
<td>$3,900</td>
</tr>
<tr>
<td>Syosset Union Free School District</td>
<td>$6,875</td>
</tr>
<tr>
<td>Three Village Central School District</td>
<td>$7,225</td>
</tr>
<tr>
<td>Trevor Day School</td>
<td>$2,300</td>
</tr>
<tr>
<td>Wantagh Union Free School District</td>
<td>$1,600</td>
</tr>
</tbody>
</table>
Sites of Major Faculty Workshops

<table>
<thead>
<tr>
<th>State</th>
<th>Institution</th>
<th>Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>University of Alabama, Tuscaloosa</td>
<td>1987–90</td>
</tr>
<tr>
<td></td>
<td>Hudson Alpha Institute, Huntsville</td>
<td>2014</td>
</tr>
<tr>
<td>ALASKA</td>
<td>University of Alaska, Anchorage</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>University of Alaska, Fairbanks</td>
<td>1996</td>
</tr>
<tr>
<td>ARIZONA</td>
<td>Arizona State University, Tempe</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>Tuba City High School</td>
<td>1988</td>
</tr>
<tr>
<td></td>
<td>University of Arizona, Tucson</td>
<td>2011, 2019</td>
</tr>
<tr>
<td></td>
<td>United States Department of Agriculture, Maricopa</td>
<td>2012</td>
</tr>
<tr>
<td>ARKANSAS</td>
<td>Henderson State University, Arkadelphia</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>University of Arkansas, Fayetteville</td>
<td>2017, 2019</td>
</tr>
<tr>
<td></td>
<td>University of Arkansas, Little Rock</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>University of Arkansas for Medical Sciences, Little Rock</td>
<td>2019</td>
</tr>
<tr>
<td>CALIFORNIA</td>
<td>California State University, Dominguez Hills</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>California State University, Fullerton</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>California State University, Long Beach</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>California Institute of Technology, Pasadena</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Chan-Zuckerberg BioHub, San Francisco</td>
<td>2018</td>
</tr>
<tr>
<td></td>
<td>Canada College, Redwood City</td>
<td>1997</td>
</tr>
<tr>
<td></td>
<td>City College of San Francisco</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>City College of San Francisco</td>
<td>2011, 2013</td>
</tr>
<tr>
<td></td>
<td>Foothill College, Los Altos Hills</td>
<td>1997</td>
</tr>
<tr>
<td></td>
<td>Harbor-UCLA Research & Education Institute, Torrance</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Los Angeles Biomedical Research Institute (LA Biomed), Torrance</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>Laney College, Oakland</td>
<td>1999</td>
</tr>
<tr>
<td></td>
<td>Lutheran University, Thousand Oaks</td>
<td>1999</td>
</tr>
<tr>
<td></td>
<td>Oxnard Community College, Oxnard</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>Pasadena City College</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Pierce College, Los Angeles</td>
<td>1998</td>
</tr>
<tr>
<td></td>
<td>Salk Institute for Biological Studies, La Jolla</td>
<td>2001, 2008</td>
</tr>
<tr>
<td></td>
<td>San Francisco State University</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>San Diego State University</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>San Jose State University</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>Santa Clara University</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Scripps Institute, San Diego</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Southwestern College, Chula Vista</td>
<td>2014–15</td>
</tr>
<tr>
<td></td>
<td>Stanford University, Palo Alto</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>University of California, Berkeley</td>
<td>2010, 2012</td>
</tr>
<tr>
<td></td>
<td>University of California, Davis</td>
<td>1986</td>
</tr>
<tr>
<td></td>
<td>University of California, Davis</td>
<td>2012, 2014–15</td>
</tr>
<tr>
<td></td>
<td>University of California, Long Beach</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>University of California, Northridge</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>University of California, Riverside</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>University of California, Riverside</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>University of California, San Francisco</td>
<td>2015</td>
</tr>
<tr>
<td>COLORADO</td>
<td>Aspen Science Center</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>Colorado State University, Fort Collins</td>
<td>2013, 2018</td>
</tr>
</tbody>
</table>
Community College of Denver 2014
United States Air Force Academy, Colorado Springs 1995
University of Colorado, Denver 1998, 2009–10

CONNECTICUT
Choate Rosemary Hall, Wallingford 1987
Jackson Laboratory, Farmington 2016

DELAWARE
University of Delaware, Newark 2016

DISTRICT OF COLUMBIA

DELAWARE
University of Delaware, Newark 2016

DISTRICT OF COLUMBIA

CONSTRUCTION
Armwood Senior High School, Tampa 1991
Florida Agricultural & Mechanical University, Tallahassee 2007–08
Florida Agricultural & Mechanical University, Tallahassee 2011
Florida SouthWestern State University, Fort Myers 2015
North Miami Beach Senior High School 1991
Seminole State College, Sanford 2013–14
University of Florida, Gainesville 1989
University of Miami School of Medicine 2000
University of Western Florida, Pensacola 1991

GEORGIA
Fernbank Science Center, Atlanta 1989, 2007
Gwinnett Technical College, Lawrenceville 2011–12
Morehouse College 1991, 1996
Morehouse College 1997
Spelman College, Atlanta 2010
University of Georgia, Athens 2015

HAWAII
Kamehameha Secondary School, Honolulu 1990
University of Hawaii at Manoa 2012

IDAHO
University of Idaho, Moscow 1994

ILLINOIS
Argonne National Laboratory 1986–87
iBIO Institute/Harold Washington College, Chicago 2010
Illinois Institute of Technology, Chicago 2009
Kings College, Chicago 2014
University of Southern Illinois, Carbondale 2016

INDIANA
Butler University, Indianapolis 1987
Purdue University, West Lafayette 2012

IOWA
Drake University, Des Moines 1987

KANSAS
University of Kansas, Lawrence 1995
University of Kansas, Lawrence 1995

KENTUCKY
Bluegrass Community & Technical College, Lexington 2012–14
Murray State University 1988
University of Kentucky, Lexington 1992
Western Kentucky University, Bowling Green 1992

LOUISIANA
Bossier Parish Community College 2009
Jefferson Parish Public Schools, Harvey 1990
John McDonogh High School, New Orleans 1993
Southern University at New Orleans 2012
University of New Orleans 2015
University of New Orleans 2018

MAINE
Bates College, Lewiston 1995
Southern Maine Community College 2012–13

MARYLAND
Bowie State University 2011, 2015
Frederick Cancer Research Center 1995
McDonogh School, Baltimore 1988
Montgomery County Public Schools 1990–92
National Center for Biotechnology Information, Bethesda 2002
St. John's College, Annapolis 1991
University of Maryland, School of Medicine, Baltimore 1999

Massachusetts
Arnold Arboretum of Harvard University, Roslindale 2011
Beverly High School 1986
Biogen Idec, Cambridge 2002, 2010
Boston University 1994, 1996
CityLab, Boston University School of Medicine 1997
Dover-Sherborn High School, Dover 1989
Randolph High School 1988
The Winsor School, Boston 1987
Whitehead Institute for Biomedical Research, Cambridge 2002

Michigan
Athens High School, Troy 1989
Schoolcraft College, Livonia 2012

Minnesota
American Society of Plant Biologists, Minneapolis 2015
Minneapolis Community and Technical College, Madison 2009
Minneapolis Community and Technical College, Madison 2013
University of Minnesota, St. Paul 2005
University of Minnesota, St. Paul 2010

Mississippi
Mississippi School for Math & Science, Columbus 1990–91
Rust College, Holly Springs 2006–08, 2010

Missouri
St. Louis Science Center 2008–10
Stowers Institute for Medical Research, Kansas City 2002, 2008
University of Missouri, Columbia 2012
Washington University, St. Louis 1989
Washington University, St. Louis 1997, 2011, 2019

Montana
Montana State University, Bozeman 2012

Nebraska
University of Nebraska-Lincoln, Lincoln 2014

Nevada
University of Nevada, Reno 1992, 2014

New Hampshire
Great Bay Community College, Portsmouth 2009
New Hampshire Community Technical College, Portsmouth 1999
St. Paul's School, Concord 1986–87

New Jersey
Coriell Institute for Medical Research, Camden 2003
Raritan Valley Community College, Somerville 2009

New Mexico
Biolink Southwest Regional Meeting, Albuquerque 2008
Los Alamos National Lab 2017
New Mexico State University, Las Cruces 2017
Santa Fe Community College, Santa Fe 2015

New York
Albany High School 1987
Bronx High School of Science 1987
Brookhaven National Laboratory, Upton 2015–18
Canisius College, Buffalo 2007
Canisius College, Buffalo 2011
City College of New York 2012
Cold Spring Harbor High School 1985, 1987
Cold Spring Harbor Laboratory 2014–15, 2018–19
Columbia University, New York 1993
Cornell University, Ithaca 2005
DeWitt Middle School, Ithaca 1991, 1993
Dolan DNA Learning Center 1990–92
DNA Learning Center West 2005
DNA Learning Center NYC 2019
Environmental Science Center, Bergen Beach, Brooklyn 2015–16
Fostertown School, Newburgh 1991
Harlem DNA Lab, East Harlem 2015–16
Huntington High School 1986
Irvington High School 1986
K-12 Summer Institute, Kerrville 2019
John Jay College of Criminal Justice 2009
Junior High School 263, Brooklyn 1991
Lindenhurst Junior High School 1991
Math for America 2017–19
Michel J. Petrides School, Staten Island 2018
Mount Sinai School of Medicine, New York 1997
Nassau Community College, Garden City 2013
New York Botanical Garden, Bronx 2013
New York City Department of Education 2007, 2012
New York City Technical College (City Tech) 2018
New York Institute of Technology, New York 2006
New York Institute of Technology, New York 2006
Orchard Park Junior High School 1991
Plainview-Old Bethpage Middle School 1991
Regeneron Pharmaceuticals, Inc 2019
School of Visual Arts, New York 2017
State University of New York, Purchase 1989
State University of New York, Stony Brook 1987–90, 2015–18
State University of New York, Stony Brook 2014, 2016
The Rockefeller University, New York 2003, 2015–16
The Rockefeller University, New York 2010
Titusville Middle School, Poughkeepsie 1991, 1993
Trudeau Institute, Saranac Lake 2001
Union College, Schenectady 2004
United States Military Academy, West Point 1996
Wheatley School, Old Westbury 1985

NORTH CAROLINA
CIT Center for Health Research, Triangle Park 2003
North Carolina Agricultural & Technical State University, Greensboro 2006–07, 2009–11
North Carolina School of Science, Durham 1987
North Carolina State University, Raleigh 2012, 2018

NORTH DAKOTA
North Dakota State University, Fargo 2012

OHIO
Case Western Reserve University, Cleveland 1990
Cleveland Clinic 1987
Langston University, Langston 2008
North Westerville High School 1990
The Ohio State University, Wooster 2016

OKLAHOMA
Oklahoma City Community College 2000
Oklahoma City Community College 2006–07, 2010
Oklahoma Medical Research Foundation, Oklahoma City 2001
Oklahoma School of Science and Math, Oklahoma City 1994
Tulsa Community College, Tulsa 2009
<table>
<thead>
<tr>
<th>Location</th>
<th>Institution/Program</th>
<th>Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tulsa Community College, Tulsa</td>
<td></td>
<td>2012–14</td>
</tr>
<tr>
<td>OREGON</td>
<td>Kaiser Permanente-Center for Health Research, Portland</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Linfield College, McMinnville</td>
<td>2014</td>
</tr>
<tr>
<td>PENNSYLVANIA</td>
<td>Duquesne University, Pittsburgh</td>
<td>1988</td>
</tr>
<tr>
<td></td>
<td>Germantown Academy</td>
<td>1988</td>
</tr>
<tr>
<td></td>
<td>Kimmel Cancer Center, Philadelphia</td>
<td>2008</td>
</tr>
<tr>
<td>RHODE ISLAND</td>
<td>Botanical Society of America, Providence</td>
<td>2010</td>
</tr>
<tr>
<td>SOUTH CAROLINA</td>
<td>Clemson University</td>
<td>2004, 2015</td>
</tr>
<tr>
<td></td>
<td>Medical University of South Carolina, Charleston</td>
<td>1988</td>
</tr>
<tr>
<td></td>
<td>University of South Carolina, Columbia</td>
<td>1988</td>
</tr>
<tr>
<td>SOUTH DAKOTA</td>
<td>South Dakota State University, Brookings</td>
<td>2015</td>
</tr>
<tr>
<td>TENNESSEE</td>
<td>NABT Professional Development Conference, Memphis</td>
<td>2008</td>
</tr>
<tr>
<td>TEXAS</td>
<td>Austin Community College – Rio Grande Campus</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>Austin Community College – Eastview Campus – Roundrock Campus</td>
<td>2007–09, 2013</td>
</tr>
<tr>
<td></td>
<td>Austin Community College – Roundrock Campus</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>Austin Community College - Austin</td>
<td>2018</td>
</tr>
<tr>
<td></td>
<td>Houston Community College Northwest</td>
<td>2009–10</td>
</tr>
<tr>
<td></td>
<td>J.J. Pearce High School, Richardson</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Langham Creek High School, Houston</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>University of Lone Star College, Kingwood</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>Midland College</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Southwest Foundation for Biomedical Research, San Antonio</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>Taft High School, San Antonio</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>Texas A&M University, College Station, TX</td>
<td>2013</td>
</tr>
<tr>
<td></td>
<td>Texas A&M University, Prairie View, TX</td>
<td>2013</td>
</tr>
<tr>
<td></td>
<td>Texas A & M, AG Research and Extension Center, Weslaco</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Trinity University, San Antonio</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>University of Texas, Brownsville</td>
<td>2010</td>
</tr>
<tr>
<td>VERMONT</td>
<td>Brigham Young University, Provo</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>University of Utah, Salt Lake City</td>
<td>1993</td>
</tr>
<tr>
<td>VIRGINIA</td>
<td>University of Utah, Salt Lake City</td>
<td>1998, 2000</td>
</tr>
<tr>
<td></td>
<td>Utah Valley State College, Orem</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Eastern Mennonite University, Harrisonburg</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>James Madison University, Harrisonburg</td>
<td>2017</td>
</tr>
<tr>
<td></td>
<td>Jefferson School of Science, Alexandria</td>
<td>1987</td>
</tr>
<tr>
<td></td>
<td>Mathematics and Science Center, Richmond</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Mills Godwin Specialty Center, Richmond</td>
<td>1998</td>
</tr>
<tr>
<td></td>
<td>Virginia Polytechnic Institute and State University, Blacksburg</td>
<td>2005, 2008–09</td>
</tr>
<tr>
<td></td>
<td>Shoreline Community College</td>
<td>2011, 2012</td>
</tr>
<tr>
<td>WEST VIRGINIA</td>
<td>Bethany College</td>
<td>1989</td>
</tr>
<tr>
<td>WISCONSIN</td>
<td>Blood Center of Southeastern Wisconsin, Milwaukee</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Marquette University, Milwaukee</td>
<td>1986–87</td>
</tr>
<tr>
<td></td>
<td>University of Wisconsin, Madison</td>
<td>1988–89</td>
</tr>
<tr>
<td></td>
<td>University of Wisconsin, Madison</td>
<td>2004, 2012</td>
</tr>
<tr>
<td>WYOMING</td>
<td>University of Wyoming, Laramie</td>
<td>1991</td>
</tr>
<tr>
<td>Location</td>
<td>Event</td>
<td>Year(s)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>University of Puerto Rico, Mayaguez</td>
<td>Faculty Workshops</td>
<td>1992</td>
</tr>
<tr>
<td>University of Puerto Rico, Mayaguez</td>
<td>University of Puerto Rico, Rio Piedras</td>
<td>1993</td>
</tr>
<tr>
<td>University of Puerto Rico, Rio Piedras</td>
<td>University of Puerto Rico, San Juan</td>
<td>2019</td>
</tr>
<tr>
<td>University of Puerto Rico, Rio Piedras</td>
<td>Australia Walter and Eliza Hall Institute and University of Melbourne</td>
<td>1996</td>
</tr>
<tr>
<td>University of Western Australia, Perth</td>
<td>EMBL/Australian Bioinformatics Resource, University of Melbourne</td>
<td>2016</td>
</tr>
<tr>
<td>University of Western Australia, Perth</td>
<td>University of Western Australia, Perth</td>
<td>2018</td>
</tr>
<tr>
<td>Vienna Open Lab, Vienna</td>
<td>Technical University of Graz</td>
<td>2007, 2012</td>
</tr>
<tr>
<td>Technical University of Graz</td>
<td>University of Queensland, Montreal</td>
<td>2018</td>
</tr>
<tr>
<td>Red River Community College, Winnipeg, Manitoba</td>
<td>University of Western Australia, Perth</td>
<td>1989</td>
</tr>
<tr>
<td>University of Quebec, Montreal</td>
<td>University of Western Australia, Perth</td>
<td>2018</td>
</tr>
<tr>
<td>Beijing No. 166 High School, Beijing</td>
<td>Ho Yu College, Hong Kong</td>
<td>2009</td>
</tr>
<tr>
<td>Ho Yu College, Hong Kong</td>
<td>University of Western Australia, Perth</td>
<td>2013–19</td>
</tr>
<tr>
<td>Faroe Genome Project, Torshavn, Faroe Islands</td>
<td>University of Western Australia, Perth</td>
<td>2013</td>
</tr>
<tr>
<td>Urania Science Center, Berlin</td>
<td>University of Western Australia, Perth</td>
<td>2008</td>
</tr>
<tr>
<td>Faroe Genome Project, Torshavn, Faroe Islands</td>
<td>University of Western Australia, Perth</td>
<td>2013</td>
</tr>
<tr>
<td>Porto Conte Research and Training Laboratories, Alghero</td>
<td>University of Western Australia, Perth</td>
<td>1993</td>
</tr>
<tr>
<td>ADN Mexico, Morelia</td>
<td>University of Western Australia, Perth</td>
<td>2016</td>
</tr>
<tr>
<td>ASPB Plant Biology, Mérida</td>
<td>University of Western Australia, Perth</td>
<td>2008</td>
</tr>
<tr>
<td>Langebio/Cinvestav, Irapuato</td>
<td>University of Western Australia, Perth</td>
<td>2016</td>
</tr>
<tr>
<td>Godfrye Okoye University, Enugu, Nigeria</td>
<td>University of Western Australia, Perth</td>
<td>2013, 2018</td>
</tr>
<tr>
<td>University of Panama, Panama City</td>
<td>University of Western Australia, Perth</td>
<td>1994</td>
</tr>
<tr>
<td>Eastern Visayas Campus, Philippine Science High School, Palo, Leyte</td>
<td>University of Western Australia, Perth</td>
<td>2017</td>
</tr>
<tr>
<td>Shemyakin Institute of Bioorganic Chemistry, Moscow</td>
<td>University of Western Australia, Perth</td>
<td>1991</td>
</tr>
<tr>
<td>National Institute of Education</td>
<td>University of Western Australia, Perth</td>
<td>2001–05</td>
</tr>
<tr>
<td>Singapore Science Center</td>
<td>University of Western Australia, Perth</td>
<td>2013</td>
</tr>
<tr>
<td>South-West University, Potchefstroom</td>
<td>University of Western Australia, Perth</td>
<td>2016</td>
</tr>
<tr>
<td>South African Bioinformatics Society, Durban</td>
<td>University of Western Australia, Perth</td>
<td>2016</td>
</tr>
<tr>
<td>Kristineberg Marine Research Station, Fiskebackgkil</td>
<td>University of Western Australia, Perth</td>
<td>1995</td>
</tr>
<tr>
<td>Uppsala University</td>
<td>University of Western Australia, Perth</td>
<td>2004</td>
</tr>
<tr>
<td>International Chromosome Conference, Amsterdam</td>
<td>University of Western Australia, Perth</td>
<td>2007</td>
</tr>
<tr>
<td>Wageningen University and Research Center, Wageningen</td>
<td>University of Western Australia, Perth</td>
<td>2014</td>
</tr>
<tr>
<td>Earlham Institute, Norwich</td>
<td>University of Western Australia, Perth</td>
<td>2018</td>
</tr>
<tr>
<td>The Genome Analysis Center, Norwich</td>
<td>University of Western Australia, Perth</td>
<td>2015</td>
</tr>
<tr>
<td>University of York, York</td>
<td>University of Western Australia, Perth</td>
<td>2017</td>
</tr>
<tr>
<td>Wellcome Trust Conference Center, Hinxton</td>
<td>University of Western Australia, Perth</td>
<td>2012–13</td>
</tr>
<tr>
<td>University of Warwick, Coventry</td>
<td>University of Western Australia, Perth</td>
<td>2013</td>
</tr>
</tbody>
</table>
Workshops, Meetings, Collaborations, and Site Visits

January 7-8
Software Carpentry Workshop, University of Arkansas, Fayetteville, Arkansas

January 10-11
Maize Annotation Jamboree, Scripps Institute of Oceanography, San Diego, California

January 11
The Central Pine Barrens Cooperators Meeting, Hyatt Place Long Island/East End, Riverhead, New York

January 12
Urban Barcode Project Open Lab, Harlem DNA Lab

January 12-16
International Plant and Animal Genome XXVII Conference 2019, CyVerse Education Sessions:
“CyVerse Software, Tools, and Services for Data-Driven Discovery, Data Science, and Education,” “Advanced Computational Methods - Machine Learning, Contains, and Clouds,”
“Biochemical and Bioinformatics Infrastructure to Support Metabarcoding CUREs,” San Diego, California

January 17
Urban Barcode Project Open Lab, Harlem DNA Lab

January 19
Saturday DNA! “Enzymes in Action,” DNALC

January 22
NIH Barcode Long Island Open Lab, DNALC
Urban Barcode Project Open Lab, Harlem DNA Lab

January 25
Site visit by Armando Barriguete and Hugo Scherer, Mexico DNA Learning Center Development, Mexico City, Mexico

January 30
Site visit by Vision Gifted Chinese Children’s School, Shenzhen, China

January 31
Urban Barcode Project Open Lab, Harlem DNA Lab

February 1
RNA-Seq With DNA Subway Webinar, DNALC

February 2
Urban Barcode Project Open Lab, Harlem DNA Lab

February 7
Urban Barcode Project Open Lab, Harlem DNA Lab

February 8
DNA Barcoding Teacher Workshop, DNALC NYC at City Tech

February 9
Saturday DNA! “BioArt” DNALC
Ötzi the Iceman Tour, DNALC

February 11-22
DNA Science, DNA Barcoding and Research Workshops, Beijing 166 School, DNALC

February 12
Urban Barcode Project Open Lab, Harlem DNA Lab

February 19-20
Go Fish - eDNA Teacher Workshop, Pier 84, New York, New York

February 19-22
Urban Barcode Research Program Conservation Genetics Workshop, Harlem DNA Lab

February 25
Arkansas Bioinformatics Consortium Annual Meeting, “CyVerse Cyberinfrastructure for Research and Education in Genomics and Metagenomics,” University of Arkansas for Medical Sciences, Little Rock, Arkansas

February 28
Urban Barcode Project Open Lab, Harlem DNA Lab

March 2
Urban Barcode Project Open Lab, Harlem DNA Lab

March 8
Site visit by Passaic County Community College Delegation, Paterson, New Jersey

March 9
NIH Barcode Long Island Open Lab, Stony Brook University, Stony Brook, New York

March 9

March 12
Urban Barcode Project Open Lab, Harlem DNA Lab

March 13-14
Maize Annotation Jamboree, Washington University, St. Louise, Missouri

March 14-17
Maize Genetics Conference, “Evaluating Community Curation Approaches for Improving Annotation on Classical Maize Gene Models,” Poster Session, Washington University, St. Louis, Missouri

March 16
NIH Barcode Long Island Open Lab, Brookhaven National Laboratory, Upton, New York
Saturday DNA! “Ancient Ancestry,” DNALC
Ötzi the Iceman Tour, DNALC

March 21
Urban Barcode Project Open Lab, Harlem DNA Lab

March 26
Urban Barcode Project Open Lab, Harlem DNA Lab

Mar 27-Apr 14
DNA Barcoding and Research Workshops, Beijing 166 School, DNALC
April 2-5 NSF NEON Diversity in Data Science Conference, “Broadening Participation in Data Science,” NEON, Boulder, Colorado

April 6 NIH Barcode Long Island Open Lab, Brookhaven National Laboratory, Upton, New York
NIH Barcode Long Island Open Lab, DNA Learning Center West
Urban Barcode Project Open Lab, Harlem DNA Lab

April 10 “DNA Barcoding Research: The First Step in a Life of Science,” Lecture, DNALC Asia, Suzhou, China

April 11 Urban Barcode Project Open Lab, Harlem DNA Lab

April 13 NIH Barcode Long Island Open Lab, Stony Brook University, Stony Brook, New York
Saturday DNA! “WiSE Presents: Get to Know GMOs!” DNALC

April 16 Urban Barcode Project Open Lab, Harlem DNA Lab

April 17 NSF CyVerse Webinar Series, “Get Started with CyVerse,” DNALC

April 22-26 DNA Barcoding and Bioinformatics Training Workshop, DNALC NYC at City Tech

April 27 NIH Barcode Long Island Open Lab, DNALC

April 29 Regeneron Cultivation Event, Regeneron, Tarrytown, New York

April 30 Urban Barcode Research Program Update Event, The Irondale Center for Theater, Education, and Outreach, Brooklyn, New York

May 8 NIH Barcode Long Island Bioinformatics Open Lab, DNALC

May 9 Ötzi the Iceman Tour, DNALC

May 11 BioCódigo de Barras Symposium, “Proyectos de Investigacion Educativa a Traves de Biocodigos de Barras,” National Institute of Genomic Medicine, Ciudad de Mexico, Mexico
Saturday DNA! “April Showers Bring May Flowers,” DNALC
Ötzi the Iceman Tour, DNALC

May 15 City Tech Cultivation Event, DNALC NYC at City Tech

May 18-19 National Geographic Filming at DNALC

May 21 Regeneron Cultivation Event, Regeneron, Tarrytown, New York

May 29 “Iceman - Ötzi’s Final Days”, Cinema Arts Centre, Huntington, New York

May 30 Urban Barcode Project/Pinkerton Urban Barcode Research Program Symposium, New York Academy of Medicine, New York, New York

May 30-31 NSF CyVerse Genomics Data Carpentry Workshop, University of Arizona, Tucson, Arizona

June 1 Saturday DNA! “Dust Away Crime: The Truth About Fingerprints,” DNALC
Ötzi the Iceman Tour, DNALC

June 4 Barcode Long Island Student Symposium, CSHL
Introduction to Regeneron Event, Rye Country Day School, Rye, NY

June 7 St. David’s School Science Expo, St. David’s School New York, New York

June 8 Cold Spring Harbor Laboratory Open House, CSHL
Ötzi the Iceman Tour, DNALC

June 10-14 DNA Barcoding for CURES Workshop, James Madison University, Madison, Wisconsin
Genome Science Workshop, Lycee Francais, New York, New York
Green Genes Workshop, Lycee Francais, New York, New York

June 11 Ötzi the Iceman Tour, DNALC

June 13 Ötzi the Iceman Tour, DNALC

June 13-July 3 Biotechnology Workshops, Grace Church High School, New York, New York

June 18 Ötzi the Iceman Tour, DNALC
June 23-28 Gordon Research Conferences, Undergraduate Biology Education Research, Bates College, Lewiston, Maine
June 24-28 *BioCoding* Workshop, Toms River High School East, Toms River, New Jersey
June 25 5th Annual BOP Research Symposium, Governors Island, New York, New York
June 30 CSHL Frontiers in Plant Science Workshop, “240 - Minute R Tutorial,” CSHL
July 1 HRPT Collaborator Training, Pier 84, Hudson River Park, New York, New York
July 1-5 *Fun with DNA* Workshop, DNALC
 Genome Science Workshop, DNALC
 Green Genes Workshop, DNALC
 World of Enzymes Workshop, DNALC
 Pinkerton *Urban Barcode Research Program* Conservation Genetics Workshop, *Harlem DNA Lab*
July 8-12 *BioCoding* Workshop, DNALC
 DNA Science Workshop, DNALC
 Forensic Detectives Workshop, DNALC
 Fun with DNA Workshop, DNALC
 World of Enzymes Workshop, DNA Learning Center West
 Fun with DNA Workshop, Portledge School, Locust Valley, New York
 World of Enzymes Workshop, Toms River High School East, Toms River, New Jersey
July 15-19 *DNA Barcoding* Workshop, DNALC
 BioCoding Workshop, DNALC
 Green Genes Workshop, DNALC
 Fun with DNA/World of Enzymes Workshops, Beijing 166, DNALC (2 sessions)
 Pinkerton *Urban Barcode Research Program DNA Barcoding* and Bioinformatics Workshop, *Harlem DNA Lab*
 DNA Science Workshop, DNA Learning Center West
 World of Enzymes Workshop, Portledge School, Locust Valley, New York
July 17 Ötzi the Iceman Tour, DNALC
July 17-Aug 5 *DNA Barcoding* Workshop, DNALC Asia, Suzhou, China
July 22 NSF CyVerse Webinar Series, “Get Started with CyVerse,” DNALC
July 22-23 “*DNA Barcoding: Uncovering Hidden Biodiversity in Your Own Back Yard,*” K-12 Summer Institute, Kerrville, Texas
July 22-26 *DNA Science* Workshop, DNALC
 World of Enzymes Workshop, DNALC
 Forensic Detectives Workshop, Beijing 166, DNALC
 Green Genes Workshop, Beijing 166, DNALC
 Green Genes Workshop, DNA Learning Center West
 Pinkerton *Urban Barcode Research Program Conservation Genetics* Workshop, *Harlem DNA Lab*
July 24 ISMB/ECCB Conference, “Overview of CyVerse Tools & Services: Intro to Data/Metadata Management,” “Training, Technology, Togetherness - Promoting Knowledge Exchange in Life Sciences through Communities of Practice,” Basel, Switzerland
Ötzi the Iceman Tour, DNALC
July 26 “Cyberinfrastructure for Scaling Research, Education, and People,” Lecture, Swizz Institute of Bioinformatics, Lausanne, Switzerland
 Site visit by Emily Zeng and Xiaoli Wu, Shen Wai International School, Shenzhen, China
July 29-Aug 2 *DNA Science* Workshop, DNALC
 Fun with DNA Workshop, DNALC
 Forensic Detectives Workshop, Beijing 166, DNALC
 Green Genes Workshop, Beijing 166, DNALC
Fun with DNA Workshop, DNA Learning Center West
Pinkerton Urban Barcode Research Program DNA Barcoding and Bioinformatics Workshop, Harlem DNA Lab

July 30-Aug 4
Invertebrates in Education & Conservation Conference, El Conquistador Hilton, Tucson, Arizona
July 31
Site Visit by Nan Gerson, Bethpage Federal Credit Union, Bethpage, New York
August 1
ASM Conference for Undergraduate Educators (ASMCUE), “Course-based Microbiome Research,” Sheraton Tysons Hotel, Tysons, Virginia
August 5-9
Being Human Workshop, DNALC
DNA Science Workshop, DNALC
Green Genes Workshop, DNALC
World of Enzymes Workshop, DNALC
DNA Science Workshop, DNA Learning Center West
DNA Science Workshop, DNALC NYC at City Tech
Pinkerton Urban Barcode Research Program Conservation Genetics Workshop, Harlem DNA Lab

August 12-16
DNA Barcoding Workshop, DNALC
DNA Science Workshop, DNALC
Fun with DNA Workshop, DNALC
World of Enzymes Workshop, DNALC
Forensic Detectives Workshop, DNA Learning Center West
DNA Barcoding Workshop, DNALC NYC at City Tech
Pinkerton Urban Barcode Research Program DNA Barcoding and Bioinformatics Workshop, Harlem DNA Lab
NIH Barcode Long Island Teacher Workshop, Hyatt Place East End, Riverhead, New York

August 14
Ötzi the Iceman Tour, DNALC
August 16
August 19-23
Fun with DNA Workshop, DNALC
Forensic Detectives Workshop, DNALC
Genome Science Workshop, DNALC
Green Genes Workshop, DNALC
Fun with DNA Workshop, DNA Learning Center West
Fun with DNA Workshop, DNALC NYC at City Tech
STARS DNA Barcoding Workshop, CSHL
DNA Barcoding and Bioinformatics UBP Teacher Workshop, Harlem DNA Lab

August 26-30
DNA Science Workshop, DNALC
Fun with DNA Workshop, DNALC
Green Genes Workshop, DNALC
World of Enzymes Workshop, DNALC
WiSE Fun with DNA Workshop, CSHL
World of Enzymes Workshop, DNA Learning Center West
STARS BioCoding Workshop, DNALC

August 28
Ötzi the Iceman Tour, DNALC
September 14
Sep 23-24
Regeneron Software Carpentry Workshop, “Reproducible Analysis in R,” Regeneron, Tarrytown, New York
Sep 23-27
Week of Science Student Workshops, “Human Family,” South Tyrol Museum, Bolzano, Italy
SUBMERGE Marine Science Festival, “DNA Barcoding for Biodiversity Research,” Hudson River Park, New York, New York
October 5 Saturday DNA! “Agar Art,” DNALC
October 21 “DNA Restriction Analysis,” Teacher Workshop, Math for America, New York, New York
October 22 NSF CyVerse Webinar Series, “Get Started with CyVerse,” DNALC
October 23 Regeneron Training Session “Day of Doing Good,” Regeneron, Tarrytown, New York
October 31-Nov 7 Site visit by Dr. Peter Bickerton, Earlham Trust, Norwich, UK
November 1 Site visit by Michael Matureo, Frank Pusinelli, and David Garten, RXR Realty, LLC, Uniondale, New York
November 2 Saturday DNA! “Making Sense of Your Senses,” DNALC
November 4 “DNA Restriction Analysis,” Teacher Workshop, Math for America, New York, New York
November 5 “DNA Restriction Analysis,” and “Bacterial Transformation,” Teacher Workshop, Regeneron, Tarrytown, New York
November 18 “DNA Restriction Analysis,” Teacher Workshop, Math for America, New York, New York
November 18-22 NSF CyVerse Train the Trainer Workshop, Technical University of Graz, Graz, Austria
December 3 Invited BD2k Seminar, “Computational Thinking, Learning, and Doing in 21st Century Biology,” University of Puerto Rico, San Juan
December 3-13 Genome Science Workshop, Beijing 166 School, DNALC
December 4 Tech Night at Jack Abrams STEM Magnet School, Jack Abrams STEM Magnet School, Huntington Station, NY
December 4-5 CyVerse Workshop, “Computational Tools and Reproducibility Workshop,” University of Puerto Rico, San Juan
December 6 Shelter Island Science Fair Judging, Shelter Island, New York
December 7 “Biotechnology in American High Schools and Asian Models of DNALC Practice,” Lecture, Shen Wai International School, Shenzhen, China
NIH Barcode Long Island Open Lab, DNALC
Saturday DNA! “DNA Detectives” DNALC
Ötzi the Iceman Tour, DNALC
December 8 “Biotechnology in American High Schools and Asian Models of DNALC Practice,” Lecture, Tsinglan School, Dongguan, China
December 9 “The Rules of Life: Thinking Like a Biologist,” Lecture, SIP No. 2 Senior High School, Suzhou, China
Site visit by Laura Slatkin, Nest Fragrances, New York, New York
December 10 “The View from Nowhere in Computational Infrastructure,” Lecture, University of Scotland, Dundee, UK
December 12 Regeneron DNALC Launch Event, Regeneron, Tarrytown, New York
December 14 Urban Barcode Project Open Lab, Harlem DNA Lab
December 18 Site visit by Nancy Lippman and Carissa Jordan, CSHL Association Directors, Cold Spring Harbor, New York