Emerging Trends in Agricultural Diagnostics

Zack Bateson, Ph.D. Research Scientist National Agricultural Genotyping Center Fargo, North Dakota

Talk Outline

Genetic Research Background

- Reproductive biology lizard
- Conservation genetics bird

Diagnostic Biotechnology

• qPCR

Current NAGC research

- Pathogens honey bees
- Pathogens row crops
- Traits weeds

Undergraduate Interest - Reptiles

Masters Research

Do females have genetically diverse clutches?

Masters Research

Do females have genetically diverse clutches?

Paternity Analysis (1 locus)

Ph.D. Research

Can translocated birds boost genetic diversity in an endangered population?

Ph.D. Research

Can translocated birds boost genetic diversity in an endangered population?

mtDNA diversity restored to near historic levels

Wildlife to Agriculture

Graduate Work

NAGC At A Glance

"To translate scientific discoveries into solutions for production agriculture, functional foods, and bioenergy."

Staff

40+ years of Lab Experience ISO Accredited Testing Lab

Collaborators

Agricultural Research Service

AGENCY OF AGRICULTURE, FOOD & MARKETS

NDSU NORTH DAKOTA STATE UNIVERSITY

What motivates us

- **Bridging the gap** between research and practical applications in biotechnology
- **Diagnostics is lagging** in agriculture compared to livestock & human health
- **Pest & pathogens** are <u>top</u> <u>threats</u> to crop supplies and products

<u>Polymerase Chain Reaction</u> (PCR)

Molecular copier for small segments of DNA

Diagnostic tool to:

- Detect and quantify pathogens
- Detect unique traits in organisms

Overview of PCR-based Test Development

High-throughput

Diagnostic Research at NAGC

Crops

Weeds

Honey Bee Crisis

Jay D. Evans and Ryan S. Schwarz

United States Department of Agriculture (USDA)–Agricultural Research Service (ARS) Bee Research Laboratory, Beltsville Agricultural Research Center (BARC) East Building 476, Beltsville, MD 20705, USA

Multiple factors contribute to colony persistence

Honey Bee Pathogen Panel

Dicistroviridae

- Acute Bee Paralysis Virus (ABPV)
- Black Queen Cell Virus (BQCV)
- Israeli Acute Bee Paralysis Virus (IABPV)
- Kashmir Bee Virus (KBV)

<u>Iflaviridae</u>

- Deformed Wing Virus-A (DWV-A)
- Deformed Wing Virus-B (DWV-B)
- Sacbrood Virus (SBV)
- Slow Bee Paralysis Virus (SBPV)

Unclassified RNA viruses

- Chronic Bee Paralysis Virus (CBPV)
- Lake Sinai Virus-1 (LSV1)
- Lake Sinai Virus-2 (LSV2)

<u>Bacteria</u>

- Melissococcus plutonius
- Paenibacillus larvae

<u>Fungi</u>

- Nosema ceranae
- Nosema apis

Beekeepers move colonies between states

Beekeepers move colonies between states

Beekeepers move colonies between states

Honey Bee Research

Objectives. How is colony strength associated with pathogen loads in migrating honey bees?

Migration Routes

Study Overview – Colony Visits Feb 2019 (CA) June/July 2019 (ND) Aug/Sept 2019 (ND) Feb 2020 (CA) June/July 2020 (ND) Aug/Sept 2020 (ND) Aug/Sept 2020 (ND) Aug/Sept 2020 (ND) Collected at Visit

Research Hive

<u>Collected at Visit</u> Colony Strength Varroa Mite Counts Bees for Pathogen Panel

In partnership with

In partnership with

Field Work

Lab Work

Lab Work

Data Collected in 2019-20

Commercial Beekeeper Operations

- Eight operations (2,000 20,000 colonies)
- Sampling Events (Visits) = 957

Data Collected in 2019-20

Commercial Beekeeper Operations

- Eight operations $(2,0\overline{0}0 20,\overline{0}00 \text{ colonies})$
- Sampling Events (Visits) = 957

Variables

- Colony strength at visit (scale range 0-10)
- Colony loss (if known)
- Migration route (Direct CA, TX, Storage)
- Pathogen diagnosis and quantification at NAGC
 - Total Pathogen Tests **957** × **15** = **14,355**

Pathogen diversity across 957 colony visits

Average Pathogens/Colony Sample = 5.3

Top Seven Pathogens

Pathogen	%
Nosema ceranae	95
Sacbrood Virus	93
Black Queen Cell Virus	89
Deformed Wing Virus B	79
Deformed Wing Virus A	64
Israeli Acute Bee Paralysis Virus	25
Acute Bee Paralysis Virus	25

Factors Linked to Colony Strength

Factor	Result
IABPV	Greater loads in Weaker colonies
ABPV	Greater loads in Weaker colonies
Route	Storage route had Weaker colonies
Year	Stronger colonies in 2020 than 2019

Factor	Result
Pathogen	Greater diversity in Weaker colonies
Diversity	

Conclusions

Most colonies have sub-clinical infections

Weak colonies more likely to be infected with two viral pathogens: ABPV & IABPV

Weak colonies also had greater pathogen diversity

Transportation route affects colony strength

Monitoring pathogen levels can be a proxy for colony health and persistence.

Submitted Bee Samples (2016-20)

Pest and Pathogen Diagnostics in Crops

Pathogens & Pests contribute to dramatic worldwide yield losses

These 5 crops account for <u>half</u> of global human calorie intake!

Source: Savary et al. 2019. Nature Ecol & Evol, 3, 430-439

Current issues with diagnostics of crop diseases

1) Symptom-based diagnosis in the field is difficult

"Symptoms may look similar to other common diseases, <u>sometimes causing</u> <u>confusion and misdiagnoses</u>." – CropWatch, UNL

"Symptoms vary by hybrid susceptibility. Hybrids <u>may not experience the</u> <u>characteristic lesion</u>." – Purdue University Ext.

Current issues with diagnostics of crop diseases

- 2) Reliance on traditional lab techniques that are less sensitive
- Fresh sample <u>required</u>
- Unable to test environment (soil or residue)

<u>Surveillance</u> for Disease risk relies on weather data

Weather data

- Easiest to collect
- <u>Only 1 side of the</u> disease triangle

Pathogen data

• Increases resolution of disease risk

Host Plant

National Predictive Modeling Tool Initiative

New in 2020

27 Collaborating University and Research Institutions

National Predictive Modeling Tool Initiative New in 2020

27 Collaborating University and Research Institutions

National Predictive Modeling Tool Initiative

New in 2020

27 Collaborating University and Research Institutions

Heat Map

Weed Diagnostics

Herbicide resistance is an increasing issue

<u>Unrestrained</u> weed growth would reduce crop yield by 50% across US and Canada [The bill = \$43 billion annually]

Photo - University of Missouri

Soltani Weed Tech 2017 31:148-154

Amaranths (Pigweeds)

<u>Prolific seed producer</u> – 100,000s of seeds

Dispersed by wildlife, flooding, humans

<u>Fast growth</u> rate (up to 4 inches per day)

Up to 78% yield loss in soybeans

Herbicide Resistant

Pigweeds escaping herbicide treatments

Greenhouse Bioassays

Genetic basis for herbicide resistance *PPX2L* gene

Structure = Function

<u>Wildtype</u> - Only space for the herbicide molecule

<u>Mutant</u> – Large gap rendering the herbicide less effective

Dayon Handbook of Pesticide Toxicology 2010

Genetic tests for herbicide resistance

Palmer amaranth & Waterhemp (Pigweeds)

PPO-Inhibitor Resistance (ΔG210)

Leaf samples

Upcoming Statewide Survey

Develop distribution maps for herbicide resistance in pigweeds

NAGC comprehensive panel

- PPO-inhibitors
- Glyphosate
- ALS-inhibitors

Waterhemp Distribution

Help producers avoid application of ineffective herbicides

Conclusions

- Learning molecular protocols create career opportunities than span disciplines.
 - Wildlife to Agriculture

• **PCR-based tests** can answer many pressing questions in disease and pest management

- Strong need for a workforce in agriculture diagnostics
 - Pests and pathogens are not going away!

Thank You!

NAGC Laboratories

www.genotypingcenter.com

Zack Bateson Research Scientist

<u>zack.bateson</u>

@genotypingcenter.com

<u>National Predictive</u> <u>Modeling Tool Initiative</u> www.agpmt.org