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Agricultural Drivers
Maize genome |6 years
— What’s in a genome

— Improvements in Sequencing technology we can
Continue to evaluate approaches to develop reference
assembly and annotations

Genome/Biology enabled agriculture
— Sorghum EMS population
* Forward and reverse genetics

— Breaking down complex trait: Yeild & Quality
* Plant architecture: flower
* Response to environment: water, heat, nitrogen, disease

Biology & “Big Data” | cc | ne-are [T

— collaborative infrastructure LRR
— Future



Drivers for Agriculture: Sustainability and Defense
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Nature Editorial, How to feed a hungry world. 2010



Maize is the highest world-wide production crop

Reference genomes are foundation tools for ensuring
food security & environmental sustainability
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Maize Genome is over 12 years old

B73

oI PeL Yy

Arizona Genomics Institute

AGI

Maize Sequence Consortium (NSF, DOE, USDA) PI Rick Wilson Schnable. Ware et al. Science (2009)



Sequence genomes provides us the parts
list and allows us to see what is the same
or different between organisms

Genes in corn, rice, and
sorghum are in similar
places in the genome

Schnable, Ware et al. Science (2009)



Triceratops Genome

http://www.jurassicworld.com/creation-lab/



Genomes sequences allow us to see all the variations
(mutations) that exist in nature

Letters or Single nucleotides
polymorphisms (SNPs)

Gene content or parts list, known
as copy number variations (CNVs)

Jumping genes, Transposable
Elements (TEs) associated with
the regulatory sequence between
the Genes

Barbara McClintock
1983 Nobel Prize in Physiology & Medicine



Maize is a “Tale of Two Genomes”

Ancestors
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Evolutionary History of the Maize Genome

Ancestors

Ch break Return to 10

X =) >

Gene loss
n=10

n=20 n=10

Red = “strong”, dominant genome
Blue = “weak”

Schnable, Ware et.al, Science 2009



Maize is a “Tale of Two Genomes”

Maize, also known as corn
experienced a whole genome
duplications and then lost many
of the genes

The genes that were kept by
corn can tell us about how corn is
adapting

Transcription factors, kinases,
chromatin modifiers

Not all genomes have the same
potential

Schnable, Ware et.al, Science 2009



Humans Have Limited Molecular Diversity
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Silent Diversity; Zhao, et al. (2001) PNAS



Maize diversity is greater than the difference
between human and chimps

<

1.42%

Silent Diversity; Tenallion, et al. (2001) PNAS



Individual Maize lines are very different
from each other

The SNPs and gene differences
affect how corn plants grow

Access to these sequences can
accelerate the time it takes to
make new lines of corn

Differences come from locally
duplicated genes

Images Bo Wang



An additional copy of gene confers

tolerance to acidic soil
L—p o

Maron et. al, PNAS, 2013



Maize genomes are highly variable

» High rate of SNP and structure variation in the
population

« Structure variations are highly associated with
phenotypic variation

« Structural variation in non coding region was
enriched for phenotypic variation

« One genome is not enough to represent the
diversity of the population

Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC et al: Maize HapMap2
identifies extant variation from a genome in flux. Nat Genet 2012, 44(7):803-807.



MAIZE DIVERSITY PROJECT

Meet the Family (2002 - present)

USDA ited Statas Department Of Agric

= Agrlcultural Research Serwce
COURTESY SHERRY FLINT-GARCIA


http://www.panzea.org/

26 Reference Assemblies for the Maize Nested
Association Mapping (NAM) Population
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Maize Nested Association Mapping (NAM) Population
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26 Maize NAM founders reference assemblies (2019- 2021)
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New assemblies have a vast improvement
in the contiguity of the sequence

Kevin Victor Llaca
Fengler

@ CORTEVA

agriscience

Matrices Assembled
Contigs

Total Bases in 2,180,413,054
Assembly
Contig Contiguity 52,409,415
(NG50)
Number of Contigs 811
Longest Contig 161,290,055

[ stiffStalk

B NonstiffStalk

B Mixed

[l PopCorn

N50 is the shortest contig length needed to cover 50% of
the genome. -> Half of the genome sequence is covered SweetCorn

: P Tropical
by contigs larger than or equal the N50 contig size. Hufford et, al,pbioinv, 2021



More than 100, 000 genes found in
the 26 maize accession

Hufford et, al, bioRxiv, 2021



Maize Pan Gene Set

Candy Hirsch
U. Minnesota

Hufford et, al, bioRxiv, 2021



Maize Pan Gene Set

Core genes are more likely to be Syntenic

Candy Hirsch
U. Minnesota

Hufford et, al, bioRxiv, 2021



The bulk of the genes in maize are
found in other species

Hufford et, al, bioRxiv, 2021



Genome contains life history of the species

Teosinte
Zea mays L. ssp. parviglumis

Landraces

Maize, Modern Inbreds
Zea mays L. ssp. mays




Biology Enabled Agriculture

Complex Traits: Yield & Quality

Phenomes

QTL Genome Editing
GWAS Genomic Selection

Marker Assisted Breeding

Gene Networks

Metabolomics‘ I Regulatory Networks

EXF>_r933i0_n Metabolic Pathways
Epigenetic

Genomes



Profiling new sorghum genetic &
phenotypic variation

EMS Mutagenesis
-Random

- Single nucleotide change
->99% GC->AT

Zhanguo Xin
Cropping Systems Research Lab,
USDA-ARS, Lubbock TX

 Parental line: BTX 623
 >10,000 individual M2 seed

pools

« >6,400 M3 seeds obtained and

 Phenotyping is on-going and
need to be expanded

* High quality DNA prepared for
all lines

Jiao et al. The Plant Cell, 2016



Mutation Detection by whole
genome sequencing of 256
mutants for forward genetics

* Sequencing summary Yinping Jiao

- 20 M3 plants pooled together for sequence to averagely 16X

- Average whole genome coverage — 86%; gene space coverage -95%
* Quality control of the population: 2 contamination lines + 2 sibling lines
* Mutation detection:

- 1,862,560 EMS-induced mutations

- Sanger sequencing validation rate >98%

- 7,660 mutation/mutant = 1,798 homozygous + 5,862 heterozygous
* Mutation Effect:

- 22% of mutations are located in genes, covering 95% of Sorghum genes

- 57% (18,684) of the genes harbor >35,000 disruptive mutations, ~2
disruptive mutations per gene.

Jiao et al. The Plant Cell, 2016



Multiseeded (msd1, msd2, msd3)

BTX623 msd2
PS

N\

~50% Fertility 100% Fertility

Collaborator Zhanguo Xin
USDA ARS, Lubbock



Biology Enabled Agriculture

Yield > Flower development > grain number > fertility/branching

MSD1
EMS ‘ T T'CP transcription factor

population

Transcription factor

Expression‘ I Regulatory Networks

Metabolites
Genomes
Yinping Jiao Nick Gladman ‘oung Koung Lee  Zhanguo Xin

Jiao et al., Nature Comm. (2018)



Biology Enabled Agriculture

Yield > Flower development > grain number > fertility/branching

population

EMS ‘ T T'CP transcription factor

Transcription factor

Expression Regulatory Networks
Metabolites

Genomes

Teosinte Branched
Doebley et al., Geneitics (1995)






Biology Enabled Agriculture

Yield > Flower development > grain number > fertility/branching

Jasmonic Acid (JA) Pathway

MSD1 Ahmad, et al. 2016. Frontiers

EMS Genome Editing TCP transctiption factor
population Marker Assisted Breeding
MSD2  wipp-
Transcription factor, Plant hormones
Expression Regulatory Networks
Metabolites Metabolic Pathways
Genomes \ s

Jiao et al., Nature Comm. (2018)
Gladman et al., Int. J. Mol. Science (2019)
Dampanaboina, L., Int. J. Mol. Science (2019)



Nitrogen, soil, and agricultural
sustainability

Insufficient Nitrogen fertilizer Excess Nitrogen fertilizer

Nitrogen deficiencies, LSU (courtesy, Dr. Brenda Tubana) October 2011. Credit, USGS, NASA.



Biology Enabled Agriculture

Complex Traits: Yield> Fitness> Limiting Nitrogen

NUE

Transcription factor

Expression
Metabolic Network
Genomes
Christophe Allie Gaudinier Siobhan Brady
Lifang Zhang Andrew Olson Liseron-Monfils UC DAVIS UC DAVIS

Guardinier et al, Nature 2017



Biology Enabled Agriculture

Complex Traits: Yield> Fitness> Limiting Nitrogen

NUE

[ ]
s ale _"u

Transcription factor

Expression Regulatory Networks
Gene regulation Metabolic Network

Genomes

Christophe Allie Gaudinier
Lifang Zhang Andrew Olson Liseron-Monfils UC DAVIS

Siobhan Brady
UC DAVIS

Guardinier et al, Nature 2017



Biology Enabled Agriculture

Complex Traits: Yield> Fitness> Limiting Nitrogen

NUE

Aatee
tDNA population *= % = ="
Transcription factor

Expression
Gene regulation

Regulatory Networks
Metabolic Network

Genomes

Allie Gaudinier
UC DAVIS

Christophe

Lifang Zhang Andrew Olson Liseron-Monfils

Sufficient N

10mM NO, Limiting N

1mM N03

Siobhan Brady
UC DAVIS

Guardinier et al, Nature 2017



Biology Enabled Agriculture

Complex Traits: Yield> Fitness> Limiting Nitrogen

NUE

Aatee
tDNA population *= % = ="
Transcription factor

Expression
Gene regulation

Regulatory Networks
Metabolic Network

Genomes

Allie Gaudinier
UC DAVIS

Christophe

Lifang Zhang Andrew Olson Liseron-Monfils

Sufficient N

10mM NO, Limiting N

1mM N03

Siobhan Brady
UC DAVIS

Guardinier et al, Nature 2017



Changing climate increasing temperature and drought



Reverse Genetics: From Gene to Phenotype

Epicuticular wax (bloom) of sorghum plays important

roles in tolerance of environmental stress.

7 N N

Argﬁ?deoi;sis Sorghum gene AI:lilgzggid Mutant Id
CER6 Sobic.001G453200 E159K ARS20
KCS12 Sobic.004G341300 R189C ARS73
CER5 Sobic.009G083300  P581L ARS73
CER5 Sobic.009G083300  L244F ARS20
CER6 Sobic.006G020600  A133T ARS205
KCS7 Sobic.002G268300  P449S ARS31
KCS4 Sobic.002G268500  A49V ARS31
KCS20 Sobic.005G168700 R303Q ARS185
CER1 Sobic.001G222700  L100F ARS185

Jiao et al. The Plant Cell, 2016




Biology Enabled Agriculture

Complex Traits: Yeild > Stress > Heat tolerance

Heat tolerance

Fitness EMS population
impact

ATP dependent protease

Regulatory Networks

Genomes

Yinping Jiao Zhanguo Xin

USDA-ARS, Lubbock TX
Zhanguo Xin, Gloria Burow,
Ratan Chopra, John Burke, Chad
Hayes . T
Jigo et al. Plant Cell 2016 Ftsh11 identified in a model plant



Biology Enabled Agriculture

Complex Traits: Stress Resilience> Water Use efficiency

EMS

) Genome Editing
population

Marker Assisted Breeding

Long chain fatty acid, ATP dependent protease

Mass Spec Metabolic Pathways
Genomes USDA-ARS, Lubbock TX
Zhanguo Xin, Gloria Burow,
Yinping Jiao Nick Gladman Zhanguo Xin Ratan Chopra, John Burke,
Chad Hayes

Jiao et al. Front. Plant Science 2018



Climate change impacts disease pressures
> P e D B Da @D
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R gene

* Yield loss: Pesticide spraying increases direct cost and impacts to

Sorghum Leaf spot )
http://texassorghum.org/wp- the environment, and human health

content/uploads/2015/10/Fig.-2.ipg

* Disease resistance “R"genes (NLR) are rapidly evolving and often
seen in cluster. Good candidate for structural variation

* Pan Genomes: High quality reference assemblies to support
characterization of core and dispensible (adaptive) genes

Resistance to Southern Leaf Blight
Kump et al. Nat Genet 2011


http://texassorghum.org/wp-content/uploads/2015/10/Fig.-2.jpg

Collaborators:Yinghua Huang (USDA-
ARS), Zhanguo Xin (USDA-ARS) Chad

Sugarcane aphids e

® Since 2013 in the US sugarcane aphids have been
causing enormous damage to sorghum crop

® Tx2783 has high resistance to SCA

SCA locus mapped to the top of chromosojme 6

https://www.myfields.info/pests/sugarcane-aphid Wang et al_’ biORXiV, 2021



Sorghum sugarcane aphid tolerant TX2783
reference assembly
447 PacBio contigs (25.6 Mb contig N50)

Wang et al., bioRxiv, 2021



Sorghum Pan Genomes site:
TX2783, BTX623, TX436, TX430, RIO
Assembly Gene Neighborhood conservation view

Andrew Olson Sharon Wei  Kapeel Chou
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Biology Enabled Agriculture

Yield> Biotic Stress > Disease Resistance

Genome Editing
Marker Assisted Breeding

TX2783 191 kb structural
NLR R Genes variant (SV) containing a

cluster of R Genes

Expression l Signaling pathway

Resequencing data from
62 accessions identified

Genomes the SV is segregating at a
low frequency in these
Yinping Jiao Zhanguo Xin Bo Wang Liya Wang lines.

Wana et al.. bioRxiv. 2021



Exploring Genomes with an eye toward breeding
Biology Enabled Agriculture

Association Analyses

Phenomes Genome Editing Regulatory and Inference Networks
aTL Genomic Selection o
GWAS Marker Assisted Breeding
KKKKKKK i Metabolic Pathways Comparative analysis
“Gene rks  Protein Complexes
Metabolomics®| :' Regulatory Networks
Expression Metabolites _ —
Epigenetic Proteins Improved understanding of biological

G T it mechanisms & systems will improve breeding
enomes Crr?nscrltp S models and support for genetic engineering
romatin



Decreasing cost of sequencing leads to increasing
computes and data management

$50 million (2009) Sequencing Centers
BAC library, Sanger sequencing library, finishing libraries,computes

$250- 180 thousand (2016) Sequencing Centers 1 I I
PacBio long single molecule, Optical map, illumina short read

High quality DNA, Library prep, access sequencer & ***compute

$90- 50 thousand (2017) Sequencing Centers

Decrease Improve Increase
Sequence Assembly Compute

PacBio long single molecule, Optical map, 10X illumina short read Cost Quality Cost
High quality DNA, Library prep, access sequencer & ***compute Schnable, Ware et al, Science 2009
$45- 25 thousand (2018) Local/ Sequencing Centers Jiao et al., Nature, 2017
$2-6 thousand (2021) Long single molecule Ouet. al, Genome Biology 2020

Liu et al, Nature Comm 2020

Wang et. al, submitted 2021
Hufford et. al, submitted 2021



Biology has transitioned to an Information Science
Big Data” Biology Pyramid

Quantitative Biology Technologies

Results
Domain
Knowledge

Machine Learning
classification, modeling,
visualization & data Integration

Scalable Algorithms

Streaming, Sampling, Indexing, Parallel

Keystone Big Data in Biology 2014 Stein, Schatz, Ware



Artificial Inteligence (Al) is allowing us to reimagine
how we approach science



Artificial Inteligence (Al) is allowing us to reimagine
how we approach science

“AlphaFold is a once in a generation advance,
predicting protein structures with incredible speed
and precision. This leap forward demonstrates how

computational methods are poised to transform
research in biology and hold much promise for
accelerating the drug discovery process.”

ARTHUR D. LEVINSON
PHD, FOUNDER & CEO CALICO, FORMER CHAIRMAN
& CEO, GENENTECH



Wild Grapes have natural resistance
to disease

> @D DD e— e



Wild Grapes come with baggage they
have shed with domestication

Unpleasant taste Wild: Domesticated:

Male and Female Hermaphrodite
This, (2006); Feechan, et.al (2015)



Plant NLR R-genes

veare LU L

coil-coil ATP-binding LRR

Pathogen elicitor

Gene-for-gene hypothesis

Tyler B. (2001). Trends in Genetics. 17(11):611-614




Imagine a world where you can begin to model protein ligand
models for disease resitance genes!



The Next Green Revolution will be “Data” and
“Design” driven

Agriculture has transition to a Data Science. Massive data generation—
genotypes, phenotypes, soil & environment.

Data now exceeds human capacity to formulate and test hypotheses
about gene function, regulatory networks, and predictive agriculture.

Develop new approaches and systems that can supply new hypotheses
for researchers for crop breeding, fermentation systems, solar energy
capture, pest and disease management.

Adapt what has evolved in nature and design
the space nature missed Norman Borlaug

Nobel Peace Prize 1970



While CRISPR has the power to enhance breeding by
rapidly customizing and optimizing crop productivity

Genome Biology provides the insights to drive the
translation
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